Visualizing a nowhere differentiable but continuous everywhere function

Wei-Chi Yang Radford University Virginia, VA 24142 www.radford.edu/wyang

Objective

In advanced calculus, we learned that if

$$f(x) = \sum_{k=1}^{\infty} a^k \cos b^k \pi x$$

where *a* and *b* satisfy certain relationship ($0 < a < 1, b \in Z^+$ and

 $ab > 1 + \frac{3}{2}\pi = 5.712388981$), then we can prove that the function is nowhere differentiable but continuous everywhere. In this note we shall use the graphing approaches to discover how the behavior of a/b will lead us to a desired nowhere differentiable but continuous function. For a detailed construction, see [1]. We know we can't plot an infinite series of functions but we certainly can use the partial sum to predict the graph of an infinite sum.

Experimenting the graphs of partial sums

First we define the partial sum function as follows.

$$F(a,b,x,n) = \sum_{k=1}^{n} a^k \cos b^k \pi x$$

By setting a = 1/2, b = 2, and n = 20, we graph the function F(1/2, 2, x, 20)

Let's increase the partial sum from n = 20 to n = 30, and we obtain the following graph. F(1/2, 2, x, 30)

The graph of F(1/2, 2, x, 30) seems to be similar to that of F(1/2, 2, x, 20). We could zoom in many times to obtain the graph of F(1/2, 2, x, 30) again as follows:

F(1/2, 2, x, 30)

Notice that for a = 1/2, and b = 2, even if we increase the partial sum, we don't have a function that oscillates as much as we want yet. Therefore, we consider to increase the ratio of $\frac{b}{a}$ from 4 to 8 as follows:

F(1/2, 4, x, 30)

Note that it oscillates more than the previous graph, but still not as much as what we like. We zoom in the graph of F(1/2, 4, x, 30) as follows:

F(1/2, 4, x, 30)

We see that the function, F(1/2, 4, x, 30) does have more spikes than those of F(1/2, 2, x, 30) and F(1/2, 4, x, 30). Finally, let's graph F(1/2, 12, x, 30) (so that $ab > 1 + \frac{3}{2}\pi = 5.712388981$) as follows. F(1/2, 12, x, 30)

This looks like what we want. Therefore, from this worksheet, we learn that to make a highly oscillating trigometric function, such as $\sum_{k=1}^{\infty} a^k \cos b^k \pi x$, to be nowhere differentiable, the key is not to increase its partial sum but to increase the ratio of $\frac{b}{a}$.

Animation

We link to Maple, click here.

Remark We should keep students informed that they are only looking at the graph of a partial sum, also it does not represent the graph of a real-valued function (in the sense that computer algebra system only uses certain number of points to graph a function.) Nonetheless, by incorporating the techniques of observing the ratio of $\frac{b}{a}$ and increase the partial sums, students are able to absorb a complex idea more at ease.

1 (bibitem) Körner, T.W., Fourier Analysis, page 38-41, Cambridge University Press, 1988.