
Countable and Uncountable Sets

What follows is a different, and I hope simpler, presentation of the material in Ap-
pendix 3 of Grimaldi. For practice problems you should do Exercises A-3, page A-34, 1-6,
8. All of these can be done using the techniques and results described here. Answers to
the odd numbered exercises are in the text. Answers to the even numbered exercises are
at the end of this document.

Another name for a 1-1 and onto function (or, bijection) from A to B is a 1-1 cor-
respondence from A to B. The inverse of such a function is a 1-1 correspondence from
B to A. Thus, we often simply say that A and B can be put into 1-1 correspondence if
there is a 1-1 and onto function from A to B Equivalently, A and B can be put into 1-1
correspondence if there is 1-1 and onto function from B to A.

Example 1. The function f(n) = n + 1 is a 1-1 correspondence from N to Z+. Thus, the
positive integers and the natural numbers can be put into 1-1 correspondence.

Any two finite sets with the same number of elements can be put into 1-1 correspon-
dence. Conversely, if A and B are finite sets that can be put into 1-1 correspondence, then
we know A and B have the same number of elements. In what follows, the idea of the
“size” of a set is extended to infinite sets.

We say that two sets A and B have the same cardinality (or, size), and write |A| = |B|
if they can be put into 1-1 correspondence. We say that a set A has cardinality n, and
write |A| = n, if A can be put into 1-1 correspondence with {1, 2, . . . , n} for some natural
number n.

The cardinality of a finite set is just the number of elements it contains, so the defi-
nition agrees with our previous use of the notation |A|. Notice that {1, 2, . . . , n} is empty
when n = 0.

If |A| = n > 0 then there is a 1-1 correspondence f : {1, 2, . . . , n} → A. Thus, the
elements of A can be listed as a finite sequence f(1), f(2), . . . , f(n). Conversely, if there
is a finite sequence x1, x2, . . . , xn in which each element of A appears exactly once, then
there is a 1-1 correspondence f : {1, 2, . . . , n} → A: define f(i) = xi, 1 ≤ i ≤ n.

If |A| = |Z+|, then there is a 1-1 correspondence g : Z+ → A, so the elements of A
can be listed as an infinite sequence g(1), g(2), g(3), . . .. Conversely, if there is an infinite
sequence x1, x2, x3 . . . in which each element of A appears exactly once, then there is a 1-1
correspondence f : Z+ → A: define f(i) = xi, i = 1, 2, . . ..

A set A is called countably infinite if it can be put into 1-1 correspondence with Z+.
A set is called countable if it is finite or countably infinite. A set which is not countable is
called uncountable.

The uncountable sets are the infinite sets which can not be put into 1-1 correspondence
with the positive integers. The real numbers is one example of such a set. The existence
of uncountable sets means that not all infinite sets have the same cardinality.

Example 1 shows that the set of natural numbers is countably infinite.

Example 2. The function f : Z → Z+ defined by

f(n) =
{

2n, if n > 0;
2(−n) + 1 if n ≤ 0
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is a 1-1 correspondence (exercise: prove it). Thus, Z is countable.

To prove that a set A is countable, it must be shown that A finite, or that A can be
put into 1-1 correspondence with Z+. We currently have three methods for performing
the latter task:

(1) Directly (by describing a function) as in Examples 1 and 2 above.

(2) Write a sequence in which every element of A appears exactly once, as explained above.

(3) Find a 1-1 correspondence between A and some other set which is known to be count-
ably infinite.

Here’s why method (3) works: Suppose the set X is known to be countable. Then, there
is a 1-1 and onto function g : Z+ → X. If A can be put into 1-1 correspondence with X,
then there is a 1-1 and onto function f : X → A. The composite function f ◦ g is then a
1-1 and onto function from Z+ to A because f and g are both 1-1 and onto.

In the next few results, we will develop a couple of other methods for showing that a
set is countable.

Fact 1. Any subset of N is countable.

Proof. Let A ⊆ N. If A is finite, it is countable by definition. Otherwise, there is
an infinite sequence x1, x2, . . . in which every element of A appears exactly once: let x1

be the smallest element in A, and for i > 1, let xi be the smallest element in the set
A − {x1, x2, . . . xi−1}.

Example 3. By Fact 1 the set of prime numbers {2, 3, 5, 7, 11, 13, 17, . . .} is count-
able, since it is a subset of N. The same is true for the set of all squares of integers,
{1, 4, 9, . . . , n2, . . .}, the set of all even non-negative integers, {2n : n ∈ N}, and much
more.

Fact 2. Any subset of the negative integers is countable.

Proof. Exercise.

Fact 3. If A and B are countable sets, then so is A ∪ B.

Proof. If A and B are both finite, then so is A ∪ B, and any finite set is countable.
Otherwise, let B′ = B − A, so that A and B′ have no elements in common.

Suppose that A is finite and B′ is countably infinite. Then, there is a finite sequence
a1, a2, . . . , an that contains every element of A exactly once, and an infinite sequence
b1, b2, . . . that contains every element of B′ exactly once. An infinite sequence that contains
every element of A ∪ B (I really mean B - the elements of A ∩ B are listed among the
elements of A) exactly once is a1, a2, . . . , an, b1, b2, . . ..

A similar argument works if A is countably infinite and B′ is finite.
Finally, suppose both A and B′ are countably infinite. Then, there is an infinite

sequence a1, a2, . . . that contains every element of A exactly once, and an infinite sequence
b1, b2, . . . that contains every element of B′ exactly once. An infinite sequence that contains
every element of A ∪ B exactly once is a1, b1, a2, b2, . . ..
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Corollary 4. Any subset of the integers is countable.

Proof. Let X ⊆ Z. Let A = X ∩N and B = X −N. Then A is countable by Fact 1, and
B is countable by Fact 2. Therefore X = A ∪ B is countable by Fact 3.

Example 4. By Corollary 4 the set of all even integers is countable, as is the set of all
multiples of three, the set of all cubes of integers, etc.

It follows from Corollary 4 that once a set can be put into 1-1 correspondence with
any subset of the integers, it is countable. This leads to another method for proving that
a set is countable:

Fact 5. Let A be an infinite set. If there is an infinite sequence in which each element of
A appears at least once, then A is countable.

Proof. Let x1, x2, . . . be an infinite sequence in which each element of A appears at least
once. Define f : A → Z+ by f(a) is the smallest index i such that a = xi. Since each
element of A appears at least once in the sequence, the positive integer i exists. Let
B = f(A) be the range of f . Then B ⊆ Z+, so B is countable. Now, f maps A onto B by
the definition of the range and furthermore, f is 1-1: if f(x) = f(y) = i, then x = y = xi.
Thus, f is a 1-1 correspondence between A and a countable set. Therefore, A is countable.

The proof of Fact 5 uses the fact that the existence of a 1-1 function f : A → Z+

implies the existence if a 1-1 correspondence from A to a subset of Z+. This implies that
A is countable since there is a 1-1 correspondence between A and a subset of the integers,
and any subset of Z is countable. Thus, the proof of Fact 5 shows that if there is a 1-1
function f : A → Z+, then the set A is countable (so the requirement that f be onto
can be dropped). Since any countably infinite set X can be put into 1-1 correspondence
with Z+, the set Z+ can be replaced by X in the above argument. Therefore, a set A is
countably infinite if there is a 1-1 function from A to any countable set. This makes it
really easy to prove the following generalisation of Corollary 4.

Fact 6. Any subset of a countable set is countable.

Proof. Let A be a countable set and X ⊆ A. If X is finite, it is countable. Suppose
X is infinite. Then the function f : X → A defined by f(x) = x is 1-1. Therefore X is
countable.

Fact 5 can be used to prove the following generalisation of Fact 3.

Fact 7. If A1, A2, . . . is a collection of countably many countably infinite sets, then

∞⋃
i=1

Ai

is also a countable set.

Proof. For each positive integer i there is an infinite sequence ai,1, ai,2, . . . that contains
every element of Ai exactly once. Then a1,1, a1,2, a2,1, a1,3, a2,2, a3,1, a1,4a2,3, . . . is an infi-
nite sequence that contains every element of

⋃∞
i=1 Ai at least once. (The elements ai,j are
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listed in non-decreasing order of i + j, and if i + j = r + s then ai,j is listed before ar,s if
and only if i < r.) By Fact 4,

⋃∞
i=1 Ai is countable. .

The technique used in the above proof is called diagonal sweeping, since it corresponds
to writing the sequences in a 2-dimensional array and then consructing the sequence by
sweeping down consecutive back diagonals starting from the top left corner. Exactly the
same argument can be used to prove the following.

Example 5. The set Q of rational numbers is countable.
For each positive integer i, let Ai be the set of rational numbers with denominator
equal to i. Then, every element of Ai occurs exactly once in the sequence {ai,j}∞j=1 =
0/i, 1/i,−1/i, 2/i,−2/i, . . .. Thus, Ai is countable. Since Q =

⋃∞
i=1 Ai, the set Q of

rational numbers is countable by Fact 7. .

Uncountable sets do exist however. For example:

Fact 8. The set S of all infinite binary sequences is uncountable.

Proof. The proof is by contradiction. Suppose that S is countable. Since S is clearly not a
finite set, this means that there is a 1-1 correspondence f : Z+ → S. Hence, every infinite
binary sequence σ ∈ S is f(n) for some positive integer n. We will obtain a contradiction
to the fact that f is onto by exhibiting an element τ of S that, by its very definition, can
not be f(n) for any positive integer n. For each positive integer i, let f(i) be the sequence
fi,1, fi,2, . . .. Then, the infinite binary sequence τ = t1, t2, t3, . . . is defined by ti = 1− fi,i,
for i = 1, 2, . . ..

We claim that τ can not be f(n) for any positive integer n. This is true because, for
every positive integer n, the n-th element of the sequence τ is different from fn,n, the n-th
element of f(n). This establishes the contradiction mentioned above, and therefore there
can not be a 1-1 correspondence from Z+ to S. Hence, S is uncountable.

The technique used in the proof of Fact 8 is known as “Cantor Diagonalization”
because the sequence τ arises from changing the “diagonal elements” fi,i.

The technique of Cantor Diagonalization can also be used to prove that the set of real
numbers is uncountable. Before we do this, we need to review a concept. Every real number
has an infinite decimal expansion. Most real numbers have only one of these, but some
have two. Any number with a finite decimal expansion has one infinite decimal expansion
that ends in an infinite sequence of zeros and a second infinite decimal expansion that ends
in an infinite sequence of nines. For example, 3.2700000 . . . = 3.269999 . . .. These are the
only numbers with more than one infinite decimal expansion. We will need to make use of
this in our proof.

Fact 9. The set R of real numbers is uncountable.

Proof. The set R is clearly infinite. Suppose it is countable. Then, there exists a 1-1
correspondence f : Z+ → R. We obtain a contradiction by finding x ∈ R such that x is
not f(n) for any positive integer n.

For each positive integer i, suppose that the part of the decimal expansion of f(i)
following the decimal point is .di,1di,2di,3 . . ., where each di,j is one of 0, 1, . . . , 9. The real
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number x = 0.x1x2x3 . . . is defined by

xi =
{

5 if di,i �= 5
6 if di,i = 5

for each positive integer i.
We claim that x can not be f(n) for any positive integer n. First of all, x differs

from f(n) in the the n-th digit after the decimal point (i.e., xi �= di,i). And, secondly,
x is a number with only one infinite decimal expansion so it can not simply be a second
representation of a number that is f(n) for some n. This proves the claim.

Therefore, f is not onto, a contradiction. Hence, R is uncountable.

Since the real numbers are uncountable and the rational numbers are countable, it
follows that irrational numbers exist. It is not difficulty to show (but you don’t have to
do it) that n1/k is irrational unless n is the k-th power of some integer. In particular,

√
2

is irrational. A slightly more advanced argument can be used to show that e, the base of
the natural logarithms, is irrational, and a much more complicated argument is required
to show that π is irrational. So far we have described only countably many irrational
numbers. But the set of irrational numbers must be uncountable because otherwise R
would be the union of two countable sets, and would therefore be countable.

It is unknown whether there is a set whose cardinality lies “between” |Z+| and |R|.
This is known as the continuum hypothesis partly because the cardinality of the real num-
bers is sometimes called the continuum. The continuum hypothesis is known to be beyond
proof in our system of logic.

Since Z+ ⊆ R, we would be justified in writing |Z+| < |R|. However, you should not
believe that the continuum is the largest possible cardinality of an infinite set. There is
an infinitely heirarchy of cardinalities of infinite sets because of the following fact.

Fact 10. For any set A, |A| < |P(A)|.
Proof. First of all, |A| ≤ |P(A)|, since A can clearly be put into 1-1 correspondence with
the subset of P(A) consisting of the singleton subsets, {{x} : x ∈ A}.

Suppose |A| = |P(A)|. Then there is a 1-1 correspondence f : A → P(A). We obtain
a contradiction to the fact that f is onto by exhibiting a subset X of A such that X �= f(a)
for any a ∈ A.

For every a ∈ A, either a ∈ f(a), or a �∈ f(a). The definition of X is slippery: let
X = {a ∈ A : a �∈ f(a)}.

Consider a ∈ A. If a ∈ f(a) then a �∈ X (by definition of X), so f(a) �= X. On the
other hand, if a �∈ f(a) then a ∈ X (by definition of X), so f(a) �= X. Therefore, X �= f(a)
for any a ∈ A, a contradiction. Hence, |A| < |P(A)|.

By Fact 10, |R| < |P(R)| < |P(P(R))| < · · ·.
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Solutions to even numbered problems in Grimaldi

2. (a) f(n) = n2. (b) f(n) = 4n + 2.

4. The set I is uncountable. If I were countable then R would be the union of two
countable sets and therefore countable, a contradiction.

6. There is an infinite sequence in which each element of Z+×Z+×Z+ appears exactly once:
(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), . . .. The elements are ordered by non-decreasing
sum of the components. The elements whose components have the same sum appear in
dictionary order.

8. (a) f(x) = 3x. (b) f(x) = 5x + 2. (c) f(x) = (b − a)x + a

More Problems

9. Show that if A1, A2, . . . is a countable collection of finite sets, then X = ∪∞
i=1Ai is a

countable set.
(Hint: when X is infinite, use Fact 5.)

10. Show that the set of all binary sequences of finite length is a countable set.

11. Let Σ be a finite set. Show that the set of all sequences of elements of Σ of finite
length is countable.

12. Argue that the set of all computer programs is a finite set.

13. (Harder) Show that if A1, A2, . . . is a countable collection of countable sets, then
X = ∪∞

i=1Ai is a countable set.
(Hint: First use number 10 above to combine the finite sets into one countable set, then
use Fact 7 to do teh same for the countably infinite sets. Finally, if necessary, use Fact 3.)

6


