1. Find the first derivative for the following functions. Do not simplify your answer.
a. $f(x)=\sqrt[4]{2+\cot x}$,
b. $f(x)=\left(\frac{x+1}{2 x-1}\right)^{2}(3 x-1)$,
c. $f(x)=2^{x}\left(3-2 x^{3}\right)$,
2. Use the product or quotient rule to find $(\sec x)^{\prime}$.
3. Find $\frac{d^{15}}{d x^{15}}(x \cos x)$ by working out some first few derivatives and find a pattern.
4. If $f^{\prime}(x)=\frac{(x-1)}{\left(x^{2}+3\right)(x-2)}$, then
a. use the signs of f^{\prime} to find the intervals where f is increasing or decreasing (do this by hand),
b. find the relative maximum and minimum for f by using answer from a) above,
c. find the place where f increases the most or decreases the most (you may use a tool to do this).
5. Given $f(x)=\sqrt{16-x^{2}}$, find the largest rectangle that can fit under $y=f(x)$ and the first quadrant.
a. Set up the area function $A(x)$.
b. Find the derivative function for A.
c. Plot $y=A^{\prime}(x)$
d. Use the plot of $y=A^{\prime}(x)$ to find the maximum of $A(x)$.
6. The number N of bacteria in a culture after t days is modeled by

$$
N=200\left[1-\frac{5}{\left(t^{2}+2\right)^{2}}\right]
$$

a. Find $N^{\prime}(t)$. (by hand)
b. Find $N^{\prime}(0), N^{\prime}(10), N^{\prime}(30), N^{\prime}(40)$.
c. Plot $y=N^{\prime}(t)$ and use the plot of $y=N^{\prime}(t)$ to explain $N(t)$.
7. Given $f(x)=-(x-3)^{2}+4$. Find the shortest distance from $(0,0)$ to $y=f(x)$.

