# Maximal Subarray - Linear Algorithm

### Overview

• This algorithm illustrates using a solution to a smaller problem in a solution to a larger problem

### First Example: Maximal Subarray

• Problem: Find maximal subarray in array X(1 .. $n$)
• Given integers $x_1, x_2, ..., x_n$, find $a ≤ b$ that give $\displaystyle \text{max} \left(\sum_{i=a}^b x_i\right)$
• That is: find largest sum of a subsequence

• Solutions:
• Naive algorithms: $O(n^3)$ and $O(n^2)$ (ie triple and double loops)
• Divide and conquer algorithm: $O(n\lg n)$
• Dynamic Programming (DP) algorithm: $O(n)$

• Let's work though developing the DP algorithm

### DP Maximal Subarray Algorithm: Assumptions

• Assume the following:
• Your algorithm examines each position 1 .. $n$

• You are currently examining position $p$
• In other words, you are working on subproblem $p$

• The maximal subarray in 1 .. $p-1$ is at $a .. b$

• How could you use the maximal subarray in $1 .. p-1$ to find the maximal subarray in $1..p$?

### Using the Subproblem to Solve the Problem

• Consider finding the maximal subarray in elements $x_1 .. x_p$ for $2 ≤ p ≤ n$

• Subproblem solution: assume the maximal subarray in elements 1 .. $p-1$ is at $a .. b$

• There are two cases for $a .. b$?

1. $a .. b$ reaches $p-1$ (ie $b=p-1$)

2. $a .. b$ does not reach $p-1$ (ie $b < p-1$)

### Finding the Maximal Subarray: Case 1

• This case ($b = p-1$, ie $a .. b$ is the solution to $1 .. p-1$) is easy:

1. If $x_p > 0$, then set $b$ to $p$

• Thus, $a\dots p$ is the solution to $1 .. p$

2. If $x_p ≤ 0, a .. b$ does not change

• Thus, $a\dots b$, the solution to $1 .. p-1$ is also the solution to $1 .. p$

### Maximal Subarray: Case 2

• This case ($b < p-1$) is harder:

• What is the problem?

• What information would make things easier?

### Maximal Subarray: Extra Information

• Some additional information makes the problem solvable

• Assume that $c .. d$ is the range of the best solution that ends at $d$

• When $p=d+1$ is considered, what can happen to the $c .. d$
• Consider the values of the sums $S_{ab}$ and $S_{cd}$

### Maximal Subarray: Diagram

• Diagram showing ab and cd and p
• ### Maximal Subarray: Solution

•     function maxsub(A) return int -- return the sum of the maximal subarray