Chapter 5
Recursion
Objectives

Discuss the following topics:

• Recursive Definitions
• Method Calls and Recursion Implementation
• Anatomy of a Recursive Call
• Tail Recursion
• Nontail Recursion
• Indirect Recursion
Objectives (continued)

Discuss the following topics:

• Nested Recursion
• Excessive Recursion
• Backtracking
• Case Study: A Recursive Descent Interpreter
Recursive Definitions

- **Recursive definitions** are programming concepts that define themselves.
- A recursive definition consists of two parts:
 - The anchor or ground case, the basic elements that are the building blocks of all other elements of the set.
 - Rules that allow for the construction of new objects out of basic elements or objects that have already been constructed.
Recursive Definitions (continued)

• Recursive definitions serve two purposes:
 – **Generating** new elements
 – **Testing** whether an element belongs to a set

• Recursive definitions are frequently used to define functions and sequences of numbers
Recursive Functions

The factorial function

\[n! = \begin{cases}
1 & \text{if } n = 0 \text{ (anchor)} \\
n(n-1)! & \text{if } n > 0 \text{ (inductive step)}
\end{cases} \]

Power of 2 function

\[g(n) = 2^n = \begin{cases}
1 & \text{if } n = 0 \\
2 \cdot g(n-1) & \text{if } n > 0
\end{cases} \]
Recursive Factorial Function

```java
int factorial (int num)
{
    if (num == 0)
        return 1;
    else
        return num * factorial (num - 1);
}
```
Recursive Factorial Trace

```
fact(4)
num = 4;
since num != 0
return 4 * fact(3);

fact(3)
num = 3;
since num != 0
return 3 * fact(2);

fact(2)
num = 2;
since num != 0
return 2 * fact(1);

fact(1)
num = 1;
since num != 0
return 1 * fact(0);

fact(0)
num = 0;
since num == 0
return 1;
```

Execution of the expression fact(4)
Recursive Implementation:
Largest Value in Array

```java
public static int largest(int list[], int lowerIndex, int upperIndex)
{
    int max;
    if(lowerIndex == upperIndex)   //the size of the sublist is 1
        return list[lowerIndex];
    else
    {
        max = largest(list, lowerIndex + 1, upperIndex);
        if(list[lowerIndex] >= max)
            return list[lowerIndex];
        else
            return max;
    }
}
```
Execution of largest (list, 0, 3)
Recursive Fibonacci

public static int rFibNum(int a, int b, int n)
{
 if(n == 1)
 return a;
 else if(n == 2)
 return b;
 else
 return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);
}
Execution of rFibonacci(2,3,5)
Towers of Hanoi Problem with Three Disks
Towers of Hanoi: Three Disk Solution
Towers of Hanoi: Three Disk Solution

Move 4
Move disk 1 from needle 2 to needle 1

Move 5
Move disk 2 from needle 2 to needle 3

Move 6
Move disk 1 from needle 1 to needle 3

Move 7
Towers of Hanoi: Recursive Algorithm

```java
public static void moveDisks(int count, int needle1, int needle3, int needle2) {
    if(count > 0) {
        moveDisks(count - 1, needle1, needle2, needle3);
        System.out.println("Move disk " + count + " from " + needle1 + " to " + needle3 + ".");
        moveDisks(count - 1, needle2, needle3, needle1);
    }
}
```
Method Calls and Recursion Implementation

• Activation records contain the following:
 – Values for all parameters to the method, location of the first cell if an array is passed or a variable is passed by reference, and copies of all other data items
 – Local (automatic) variables that can be stored elsewhere
 – The return address to resume control by the caller, the address of the caller’s instruction immediately following the call
Method Calls and Recursion Implementation (continued)

– A dynamic link, which is a pointer to the caller’s activation record
– The returned value for a method not declared as void
Method Calls and Recursion Implementation (continued)

Figure 5-1 Contents of the run-time stack when `main()` calls method `f1()`, `f1()` calls `f2()`, and `f2()` calls `f3()`
Power Function

\[x^n = \begin{cases}
1 & \text{if } n = 0 \\
x \cdot x^{n-1} & \text{if } n > 0
\end{cases} \]

- A Java method for \(x^n \)

```java
double power (double x, int n) {
    if (n == 0)
        return 1.0;
    // else
    return x * power (x, n-1);
}
```

Data Structures and Algorithms in Java
Trace of recursive calls

Static public void main (String args[]) {
 ...
 y = power (5.6, 2);
 ...
}

Call 1 power(5.6, 2)
Call 2 power(5.6,1)
Call 3 power(5.6,0)
Call 3 1
Call 2 5.6
Call 1 31.36
Anatomy of a Recursive Call

Figure 5-2 Changes to the run-time stack during execution of `power(5.6, 2)`

Key:
- **SP** Stack pointer
- **AR** Activation record
- `?` Location reserved for returned value

<table>
<thead>
<tr>
<th>Third call to <code>power()</code></th>
<th>0 ← SP</th>
<th>0 ← SP</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>(105)</td>
<td>(105)</td>
<td>(105)</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second call to <code>power()</code></th>
<th>1 ← SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>(105)</td>
<td>(105)</td>
<td>(105)</td>
<td>(105)</td>
<td>(105)</td>
<td>(105)</td>
<td>(105)</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>5.6</td>
<td>5.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First call to <code>power()</code></th>
<th>2 ← SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>(136)</td>
<td>(136)</td>
<td>(136)</td>
<td>(136)</td>
<td>(136)</td>
<td>(136)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AR for <code>main()</code></th>
<th>:</th>
<th>:</th>
<th>:</th>
<th>:</th>
<th>:</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

(a) (b) (c) (d) (e) (f) (g) (h)
Tail Recursion

- **Tail recursion** is characterized by the use of only one recursive call at the very end of a method implementation.

```java
void tail (int i) {
    if (i > 0) {
        System.out.print (i + "");
        tail(i-1);
    }
}
```
Tail Recursion

Example of nontail recursion:

```java
void nonTail (int i) {
    if (i > 0) {
        nonTail(i-1);
        System.out.print (i + "");
        nonTail(i-1);
    }
}
```
Nontail Recursion

```java
/*200 */  void reverse( ) {
/*201 */    char ch = getChar( ) ;
/*202 */    if (ch != `\n`) {
/*203 */      reverse( ) ;
/*204 */      System.out.print( ch );
```
Nontail Recursion (continued)

Figure 5-3 Changes on the run-time stack during the execution of `reverse()`
Nontail Recursion (continued)

1. Divide an interval $side$ into three even parts
2. Move one-third of $side$ in the direction specified by $angle$

Figure 5-4 Examples of von Koch snowflakes
3. Turn to the right 60° (i.e., turn –60°) and go forward one-third of side
4. Turn to the left 120° and proceed forward one-third of side
5. Turn right 60° and again draw a line one-third of side long
Nontail Recursion (continued)

Figure 5-5 The process of drawing four sides of one segment of the von Koch snowflake
Nontail Recursion (continued)

drawFourLines (side, level)
 if (level = 0)
 draw a line;
 else
 drawFourLines(side/3, level-1);
 turn left 60°;
 drawFourLines(side/3, level-1);
 turn right 120°;
 drawFourLines(side/3, level-1);
 turn left 60°;
 drawFourLines(side/3, level-1);
Nontail Recursion (continued)

```java
import java.awt.*;
import java.awt.event.*;

public class vonKoch extends Frame implements ActionListener {
    private TextField lvl, len;
    vonKoch() {
        super("von Koch snowflake");
        Label lvlLbl = new Label("level");
        lvl = new TextField("4",3);
        Label lenLbl = new Label("side");
        len = new TextField("200",3);
        Button draw = new Button("draw");
        lvl.addActionListener(this);
        len.addActionListener(this);
        draw.addActionListener(this);
        setLayout(new FlowLayout());
        add(lvlLbl);
        add(lvl);
        add(lenLbl);
        add(len);
        add(draw);
        setSize(600,400);
        setForeground(Color.white);
    }
}
```

Figure 5-6 Recursive implementation of the von Koch snowflake
Nontail Recursion (continued)

```java
setBackground(Color.red);
show();
addWindowListener(new WindowAdapter() {
    public void windowClosing(WindowEvent e) {
        System.exit(0);
    }
});
private double angle;
private Point currPt, pt = new Point();
private void right(double x) {
    angle += x;
}
private void left (double x) {
    angle -= x;
}
```

Figure 5-6 Recursive implementation of the von Koch snowflake (continued)
Nontail Recursion (continued)

```java
private void drawFourLines(double side, int level, Graphics g) {
    if (level == 0) {
        // arguments to sin() and cos() must be angles given in radians,
        // thus, the angles given in degrees must be multiplied by
        PI/180;
        pt.x = ((int)(Math.cos(angle*Math.PI/180)*side)) + currPt.x;
        pt.y = ((int)(Math.sin(angle*Math.PI/180)*side)) + currPt.y;
        g.drawLine(currPt.x, currPt.y, pt.x, pt.y);
        currPt.x = pt.x;
        currPt.y = pt.y;
```

Figure 5-6 Recursive implementation of the von Koch snowflake (continued)
Nontail Recursion (continued)

```java
} else {
    drawFourLines(side/3.0,level-1,g);
    left (60);
    drawFourLines(side/3.0,level-1,g);
    right(120);
    drawFourLines(side/3.0,level-1,g);
    left (60);
    drawFourLines(side/3.0,level-1,g);
}
```

public void actionPerformed(ActionEvent e) { // ActionListener
 repaint();
}

Figure 5-6 Recursive implementation of the von Koch snowflake (continued)
public void paint(Graphics g) {
 int level = Integer.parseInt(lvl.getText().trim());
 double side = Double.parseDouble(len.getText().trim());
 currPt = new Point(200,150);
 angle = 0;
 for (int i = 1; i <= 3; i++) {
 drawFourLines(side,level,g);
 right(120);
 }
}

static public void main(String[] a) {
 new vonKoch();
}

Figure 5-6 Recursive implementation of the von Koch snowflake (continued)
Indirect Recursion
receive() → decode() → store() → receive() → decode() → ...

receive(buffer)
 while buffer is not filled up
 if information is still incoming
 get a character and store it in buffer;
 else exit();
 decode(buffer);

decode(buffer)
 decode information in buffer;
 store(buffer);

store(buffer)
 transfer information from buffer to file;
 receive(buffer);
Indirect Recursion (continued)

\[
\sin(x) = \sin\left(\frac{x}{3}\right) \cdot \frac{3 - \tan^2\left(\frac{x}{3}\right)}{1 + \tan^2\left(\frac{x}{3}\right)}
\]

\[
\tan(x) = \frac{\sin(x)}{\cos(x)}
\]

\[
\cos(x) = 1 - \sin\left(\frac{x}{2}\right)
\]
Indirect Recursion (continued)

Figure 5-7 A tree of recursive calls for \(\sin (x) \)
Nested Recursion

Ackermann Function

\[A(n, m) = \begin{cases}
 m + 1 & \text{if } n = 0 \\
 A(n-1, 1) & \text{if } n > 0, m = 0 \\
 A(n-1, A(n, m-1)) & \text{otherwise}
\end{cases} \]

\[A(3, m) = 2^{m+3} - 3 \]

\[A(4, m) = 2^{2^{16}} - 3 \]

Even \[A(4, 1) = 2^{2^{16}} - 3 = 2^{65536} - 3 \]
Excessive Recursion

Figure 5-8 The tree of calls for $Fib(6)$
Excessive Recursion (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>Fib(n+1)</th>
<th>Number of Additions</th>
<th>Number of Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>13</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>89</td>
<td>88</td>
<td>177</td>
</tr>
<tr>
<td>15</td>
<td>987</td>
<td>986</td>
<td>1,973</td>
</tr>
<tr>
<td>20</td>
<td>10,946</td>
<td>10,945</td>
<td>21,891</td>
</tr>
<tr>
<td>25</td>
<td>121,393</td>
<td>121,392</td>
<td>242,785</td>
</tr>
<tr>
<td>30</td>
<td>1,346,269</td>
<td>1,346,268</td>
<td>2,692,537</td>
</tr>
</tbody>
</table>

Figure 5-9 Number of addition operations and number of recursive calls to calculate Fibonacci numbers
Excessive Recursion (continued)

Figure 5-10 Comparison of iterative and recursive algorithms for calculating Fibonacci numbers

<table>
<thead>
<tr>
<th>n</th>
<th>Number of Additions</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Iterative Algorithm</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>42</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>57</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>87</td>
</tr>
</tbody>
</table>
Backtracking

- **Backtracking** is a technique for returning to a given position (e.g., entry point) after trying other avenues that are unsuccessful in solving a particular problem.
Backtracking (continued)

Figure 5-11 The eight queens problem
Backtracking (continued)

putQueen(row)

for every position col on the same row
 if position col is available
 place the next queen in position col;
 if (row < 8)
 putQueen(row+1);
 else success;
 remove the queen from position col;
Backtracking (continued)

Figure 5-12 A 4 x 4 chessboard

<table>
<thead>
<tr>
<th></th>
<th>0, 0</th>
<th>0, 1</th>
<th>0, 2</th>
<th>0, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>1, 0</td>
<td>1, 1</td>
<td>1, 2</td>
<td>1, 3</td>
</tr>
<tr>
<td>1, 0</td>
<td>2, 0</td>
<td>2, 1</td>
<td>2, 2</td>
<td>2, 3</td>
</tr>
<tr>
<td>2, 0</td>
<td>3, 0</td>
<td>3, 1</td>
<td>3, 2</td>
<td>3, 3</td>
</tr>
<tr>
<td>3, 0</td>
<td>Left</td>
<td>Right</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
import java.io.*;

class Queens {
 final boolean available = true;
 final int squares = 4, norm = squares - 1;
 int[] positionInRow = new int[squares];
 boolean[] column = new boolean[squares];
 boolean[] leftDiagonal = new boolean[squares*2 - 1];
 boolean[] rightDiagonal = new boolean[squares*2 - 1];
 int howMany = 0;
 Queens() {
 for (int i = 0; i < squares; i++) {
 positionInRow[i] = -1;
 column[i] = available;
 }
 for (int i = 0; i < squares*2 - 1; i++)
 leftDiagonal[i] = rightDiagonal[i] = available;

 }
}

Figure 5-13 Eight queens problem implementation
Backtracking (continued)

```java
void PrintBoard(PrintStream out) {
    . . . . . . .
}
void PutQueen(int row) {
    for (int col = 0; col < squares; col++)
        if (column[col] == available &&
            leftDiagonal[row+col] == available &&
            rightDiagonal[row-col+norm] == available) {
            positionInRow[row] = col;
            column[col] = !available;
            leftDiagonal[row+col] = !available;
            rightDiagonal[row-col+norm] = !available;
            if (row < squares-1)
                PutQueen(row+1);
            else PrintBoard(System.out);
            column[col] = available;
            leftDiagonal[row+col] = available;
            rightDiagonal[row-col+norm] = available;
        }

Figure 5-13 Eight queens problem implementation (continued)
```
Backtracking (continued)

```java
} static public void main(String args[]) {
    Queens queens = new Queens();
    queens.PutQueen(0);
    System.out.println(queens.howMany + " solutions found.");
} }
```

Figure 5-13 Eight queens problem implementation (continued)
Backtracking (continued)

Figure 5-14 Steps leading to the first successful configuration of four queens as found by the method `putQueen()`
Backtracking (continued)

<table>
<thead>
<tr>
<th>positionInRow</th>
<th>column</th>
<th>leftDiagonal</th>
<th>rightDiagonal</th>
<th>row</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 2, ,)</td>
<td>(!a, a, !a, a)</td>
<td>(!a, a, a, !a, a, a)</td>
<td>(a, a, !a, !a, a, a)</td>
<td>0, 1</td>
</tr>
<tr>
<td>{1}{2}</td>
<td>{1}</td>
<td>{1}</td>
<td>{2}</td>
<td>{2}{1}</td>
</tr>
<tr>
<td>(0, 3, 1,)</td>
<td>(!a, !a, a, !a)</td>
<td>(!a, a, a, !a, a, a)</td>
<td>(a, !a, a, !a, a, a)</td>
<td>1, 2</td>
</tr>
<tr>
<td>{1}{3}{4}</td>
<td>{1}</td>
<td>{1}</td>
<td>{4}{3}</td>
<td>{3}{4}</td>
</tr>
<tr>
<td>(1, 3, 0, 2)</td>
<td>(!a, !a, !a, !a)</td>
<td>(a, !a, !a, a, !a, a)</td>
<td>(a, !a, !a, a, !a, a)</td>
<td>0, 1, 2, 3</td>
</tr>
<tr>
<td>{5} {6} {7} {8}</td>
<td>{7}</td>
<td>{5}</td>
<td>{8}</td>
<td>{6}{5}</td>
</tr>
</tbody>
</table>

Figure 5-15 Changes in the four arrays used by method `putQueen()`
Backtracking (continued)

Figure 5-16 Changes on the run-time stack for the first successful completion of putQueen()
Backtracking (continued)

Figure 5-17 Changes to the chessboard leading to the first successful configuration
Backtracking (continued)

```java
putQueen(1);
col = 0;
col = 1;
col = 2;
col = 3;
putQueen(2)
  col = 0;
  putQueen(3)
  col = 0;
  col = 1;
  col = 2;
success;
```

Figure 5-18 Trace of calls to `putQueen()` to place four queens (continued)
Case Study: A Recursive Descent Interpreter

• The process of translating one executable statement at a time and immediately executing it is called **interpretation**

• Translating the entire program first and then executing it is called **compilation**
Case Study: A Recursive Descent Interpreter (continued)

Figure 5-19 Diagrams of methods used by the recursive descent interpreter

Data Structures and Algorithms in Java
Figure 5-19 Diagrams of methods used by the recursive descent interpreter (continued)
Case Study: A Recursive Descent Interpreter (continued)

term()
 f1 = factor();
 while current token is either / or *
 f2 = factor();
 f1 = f1 * f2 or f1 / f2;
 return f1;

factor()
 process all +s and – s preceding a factor;
 if current token is an identifier
 return value assigned to the identifier;
 else if current token is a number
 return the number;
 else if current token is (
 e = expression();
 if current token is)
 return e;
import java.io.*;

class Id {
 private String id;
 public double value;
 public Id(String s, double d) {
 id = s; value = d;
 }
 public boolean equals(Object node) {
 return id.equals(((Id)node).id);
 }
 public String toString() {
 return id + " = " + value + "; ";
 }
}

Figure 5-20 Implementation of a simple language interpreter
Case Study: A Recursive Descent Interpreter (continued)

```java
public class Interpreter {
    private StreamTokenizer fIn = new StreamTokenizer(
        new BufferedReader(
            new InputStreamReader(System.in)));

    private java.util.LinkedList idList = new java.util.LinkedList();

    public Interpreter() {
        fIn.wordChars('$','$'); // include underscores and dollar signs as
        fIn.wordChars('_','_'); // word constituents; examples of identifiers:
            // var1, x, _pqr123xyz, $aName;
        fIn.ordinaryChar('/'); // by default, '/' is a comment character;
        fIn.ordinaryChar('.'); // otherwise "n-123.45"
        fIn.ordinaryChar('-'); // is considered a token;
    }
}
```

Figure 5-20 Implementation of a simple language interpreter (continued)
private void issueError(String s) {
 System.out.println(s);
 Runtime.getRuntime().exit(-1);
}

private void addOrModify(String id, double e) {
 Id tmp = new Id(new String(id), e);
 int pos;
 if ((pos = idList.indexOf(tmp)) != -1)
 ((Id)idList.get(pos)).value = e;
 else idList.add(tmp);
}

Figure 5-20 Implementation of a simple language interpreter (continued)
private double findValue(String id) {
 int pos;
 if ((pos = idList.indexOf(new Id(id, 0.0))) != -1)
 return ((Id)idList.get(pos)).value;
 else issueError("Unknown variable " + id);
 return 0.0; // this statement is never reached;
}
private double factor() throws IOException {
 double val, minus = 1.0;
 fIn.nextToken();
 while (fIn.ttype == '+' || fIn.ttype == '-') { // take all '+'s
 if (fIn.ttype == '-') // and '-'s;
 minus *= -1.0;
 fIn.nextToken();
 }
 return minus;
}

Figure 5-20 Implementation of a simple language interpreter (continued)
Case Study: A Recursive Descent Interpreter (continued)

```java
}
if (fIn.ttype == fIn.TT_NUMBER || fIn.ttype == '.') {
    if (fIn.ttype == fIn.TT_NUMBER) {  // factor can be a number:
        val = fIn.nval;  // 123, .123, 123., 12.3;
        fIn.nextToken();
    }
    else val = 0;
    if (fIn.ttype == '.') {
        fIn.nextToken();
        if (fIn.ttype == fIn.TT_NUMBER) {
            String s = fIn.nval + "";
            s = "." + s.substring(0, s.indexOf('.'));
            val += Double.valueOf(s).doubleValue();
        }
        else fIn.pushBack();
    }
    else fIn.pushBack();
```

Figure 5-20 Implementation of a simple language interpreter (continued)
else if (fIn.ttype == '(') { // or a parenthesized
 val = expression(); // expression,
 if (fIn.ttype == ')')
 fIn.nextToken();
 else issueError("Right parenthesis is left out.");
}
else {
 val = findValue(fIn.sval); // or an identifier;
}
Case Study: A Recursive Descent Interpreter (continued)

```java
return minus*val;
}
private double term() throws IOException {
    double f = factor();
    while (true) {
        fIn.nextToken();
        switch (fIn.ttype) {
            case '*' : f *= factor(); break;
            case '/' : f /= factor(); break;
            default  : fIn.pushBack(); return f;
        }
    }
}
```

Figure 5-20 Implementation of a simple language interpreter (continued)
private double expression() throws IOException {
 double t = term();
 while (true) {
 fIn.nextToken();
 switch (fIn.ttype) {
 case '+' : t += term(); break;
 case '-' : t -= term(); break;
 default : fIn.pushBack(); return t;
 }
 }
}

Figure 5-20 Implementation of a simple language interpreter (continued)
public void run() {
 try {
 System.out.println("The program processes statements in the "
 + "following format:
 + "\t<id> = <expr>;\n\tprint <id>\n\tstatus\n\tend");
 while (true) {
 System.out.print("Enter a statement: ");
 fIn.nextToken();
 String str = fIn.sval;
 if (str.toUpperCase().equals("STATUS")) {
 java.util.Iterator it = idList.iterator();
 while (it.hasNext())
 System.out.println(it.next());
 }
 else if (str.toUpperCase().equals("PRINT")) {
 fIn.nextToken();

Figure 5-20 Implementation of a simple language interpreter (continued)
Case Study: A Recursive Descent Interpreter (continued)

str = fIn.sval;
System.out.println(str + " = " + findValue(str));
}
else if (str.toUpperCase().equals("END"))
 return;
else {
 fIn.nextToken();
 if (fIn.ttype == '=')
 {
 double e = expression();
 fIn.nextToken();
 fIn.nextToken();
 if (fIn.ttype != ';')
 issueError("There are some extras in the statement.");
 else addOrModify(str,e);
 }
 else issueError("'=' is missing.");
}
Case Study: A Recursive Descent Interpreter (continued)

```java
} catch (IOException e) {
    e.printStackTrace();
}

public static void main(String args[]) {
    (new Interpreter()).run();
}
```

Figure 5-20 Implementation of a simple language interpreter (continued)
Summary

• Recursive definitions are programming concepts that define themselves.
• Recursive definitions serve two purposes:
 – Generating new elements
 – Testing whether an element belongs to a set
• Recursive definitions are frequently used to define functions and sequences of numbers.
Summary (continued)

• Tail recursion is characterized by the use of only one recursive call at the very end of a method implementation.

• Backtracking is a technique for returning to a given position (e.g., entry point) after trying other avenues that are unsuccessful in solving a particular problem.

• The process of translating one executable statement at a time and immediately executing it is called interpretation.