Chapter 2
Computing Security and Ethics
Objectives

• In this chapter you will:
 – Learn about the origins of computer hacking
 – Learn about some of the motivations for hackers and crackers
 – Learn about technologies that system intruders use
 – Learn about malicious code
 – Learn what social engineering is and how it works
 – Learn how security experts categorize types of system attacks
 – Learn about physical and technical safeguards
Objectives (cont’d.)

• In this chapter you will (cont’d.):
 – Learn how to create a good password
 – Learn about antivirus software
 – Learn about encryption
 – Learn about preventive system setup, including firewalls and routers
 – Learn about laws to protect intellectual property and prosecute cracking
 – Learn about ethical behavior in computing
 – Learn about privacy in computing and ways to ensure it
Why You Need to Know About…
Computing Security and Ethics

• Good computer security
 – Requires looking beyond Hollywood characterization
 – Based on prevention
 • Accidental and natural events

• Security affects everyone, and everyone can affect it
 – Business computers are better protected than home computers
 • Mainly because corporations make a conscious effort to secure them
The Intruder

- **Hacker**
 - Technically proficient individual who breaks into a computer system
 - Originally connoted good intent
- **Cracker**
 - Unwelcome system intruder with malicious intent
- **Phreaking**
 - Illegally manipulating the AT&T phone system
- **Script kiddie**
 - Amateur hacker using available hacking tools
The Intruder (cont’d.)

- Intentional intruder types
 - Undirected hacker
 - Motivated by challenge of breaking into a system
 - Directed hacker
 - Motivated by greed and/or politics

- Hacktivism
 - Cracking into a system as a political act
 - The Hacker’s Manifesto
 - Anonymous document justifying cracking into systems as an ethical exercise
How Do They Get In?

• Failure to follow sound security practices
 – System configuration, programming, security
• Malicious software programs
 – Viruses
• Social engineering
 – Taking advantage of the innocent human tendency to be helpful
 • One of the most effective tools for hackers
Holes in the System

• Open nature of the Internet and networks
 – Remote access and mounting drives on other machines
• Backdoors
 – Shortcuts into programs created by system designers
• Sloppy programming
 – Leaving sensitive information in a URL string
• Buffer overflow
 – Placing more information into a memory location than that location can handle
Viruses, Worms, and Other Nasty Things

• Malicious code
 – Designed to breach system security and threaten digital information

• Viruses
 – Uninvited guest programs on a computer
 • Potential to damage files and the operating system
 – May be silent for a while
 – Sharing files may transmit viruses
 – E-mail attachments can host a virus
 • Activate when opened
Viruses, Worms, and Other Nasty Things (cont’d.)

Figure 2-1, A typical virus e-mail warning
Viruses, Worms, and Other Nasty Things (cont’d.)

- **Worm**
 - Program that actively reproduces itself across a network
 - A bot is a program that can roam the Internet anonymously and works on its own

- **Trojan program**
 - Program posing as an innocent program
 - Worst possible is an antivirus program
The Human Factor: Social Engineering

• Preys on human gullibility, sympathy, or fear to take advantage of the target
 – Posing as an insider at a company
 – Dumpster diving
 – Browsing a company Web site for intranet information
 – Using cracker techniques
 – Sending spam
Types of Attacks

• Access attacks include snooping, eavesdropping, and interception
 – Snooping: browsing a person’s files
 – Eavesdropping: using a sniffer program
 • Allows the user to listen in on network traffic
 – Intercepting: determines whether the information continues on to its intended receiver

• Modification attacks
 – Alter information illicitly
Types of Attacks (cont’d.)

• Denial-of-service attacks
 – Prevent legitimate users from using the system or accessing information
 • Pure vandalism
• Repudiation attacks
 – Injure the reliability of information by creating a false impression about an event
 • Sending an e-mail to someone as if it were from someone else
Managing Security: The Threat Matrix

- Managed risk
 - Basis of security
- Risk
 - Relationship between vulnerability and threat
- Vulnerability
 - Sensitivity of the information and the skill level needed by the attacker to threaten that information
 - Open ports and Internet connections
- Threat
 - Characterized by targets, agents, and events
Vulnerabilities

• Examples:
 – Internet connections
 – Hard or soft connections to partner organizations
 – Open ports
 – Physical access to the facilities
 – Phone modem access

• Evaluating vulnerabilities is essential
Threat: Agents

• Examples:
 – Crackers
 – Employees and ex-employees
 – Terrorists and criminals
 – Commercial rivals, partners, customers, visitors
 – Natural disasters
 – General public

• Items to examine regarding agents:
 – Access capability to information, knowledge, and motivation
Threat: Targets and Events

• Confidentiality
 – Ensures that only those authorized to access information can do so

• Encryption
 – Used for information with a high level of confidentiality
 – Transforms original text into coded or encrypted data

• Integrity
 – Assures that information is correct
 • Digital certificates and encryption
Threat: Targets and Events (cont’d.)

• Availability
 – Making information and services accessible on a normal basis
 • Backup copies and disaster recovery plans

• Accountability
 – Ensures system is as secure as feasible and an activity record exists for reconstructing a break-in
 – Identification and authentication (I&A)
 • Identification: knowing who someone is
 • Authentication: verifying that someone is who they claim to be
Measuring Total Risk

• Risk is measured in terms of cost
• Risk is difficult to calculate until the event occurs
 – Time the event might take to fix if a key system down
 – Physical resources needed to be brought to bear
 – Damage to organization’s reputation
 – Opportunity cost of lost business during the crisis
Managing Security: Countermeasures

• Topics:
 – Clean living
 – Passwords
 – Antivirus software
 – Encryption
 – Proper system setup
Clean Living (or Only the Paranoid Survive)

- Create and enforce a security policy
- Use physical safeguards
 - Computers, trash, visitors
- Use passwords to protect everything
 - Startup, e-mail, router, phone, PDA, screen saver
- Destroy old copies of sensitive material
 - Shred, overwrite, use a software degausser
- Back up everything of value
 - Copies kept off-site or in a bombproof lockbox
Clean Living (cont’d.)

Figure 2-2, A computer lock as a physical safeguard

Figure 2-3, Two technologies that help back up your system: a surge suppressor and a UPS
Clean Living (cont’d.)

- Protect against system failure
 - Surge protector, uninterruptible power supply
- Create an acceptable use policy (AUP)
 - Defines who can use company computers and networks, when, and how
 - Callbacks and virtual private networks
- Protect against viruses
 - Antivirus, antispam, and anticookie software
Clean Living (cont’d.)

• Create a disaster recovery plan (DRP)
 – Written plan for responding to natural or other disasters
 • Minimizes downtime and damage to systems and data
 – Key items to address
 • Data storage and recovery, centralized and distributed systems recovery, end-user recovery, network backup, internal and external data and voice communication restoration, emergency management and decision making, customer services restoration
 – May require off-site storage and communication considerations
Passwords

• Good passwords characteristics
 – At least eight characters
 – No real words
 – Include as many different characters as possible

• Use a combination of something you:
 – Know (password)
 – Have (an ID)
 – Are (biometrics)
Table 2-1, Password protection using combinations of the letters A through Z

<table>
<thead>
<tr>
<th>number of characters (A through Z)</th>
<th>possible combinations</th>
<th>human avg. time to discovery (max time/2)</th>
<th>computer avg. time to discovery (max time/2)</th>
<th>tries per second: 1</th>
<th>tries per second: 1 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>13 seconds</td>
<td>.000013 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$26 \times 26 = 676$</td>
<td>6 minutes</td>
<td>.000338 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>26 raised to 8 = $208,827,064,576$</td>
<td>6640 years</td>
<td>58 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>26 raised to 10 = 1.4×10 raised to 14</td>
<td>4.5 million years</td>
<td>4.5 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Passwords (cont’d.)

Figure 2-4, Three potentially combined authentication methods, from left to right: what you know, what you have, what you are
Antivirus Software

- Program designed to detect, block, and deal with computer viruses
 - Virus signature: code uniquely identifying a virus
 - Honeypot: trap to catch and track numbers
 - Heuristics: rule set to predict how a virus might act
 - Checksum: mathematical means to check the content of a file or value
Using Encryption to Secure Transmissions and Data

• Encryption uses an encryption key
 – Scrambles transmissions
 • Only receiver with appropriate decoding key can read it
 – The longer the key, the more secure the encryption
 • 128-bit encryption used for online banking

• Web pages
 – Use S-HTTP, SET, or SSL to send secure transactions
 • S-HTTP and SSL use digital certificates issued by a certification authority (CA)
Using Encryption to Secure Transmissions and Data (cont’d.)

- Encryption standards today: key-based
 - Data Encryption Standard (DES)
 - RSA (named after Rivest, Shamir, and Adelman)
 - Advanced Encryption Standard (AES)

- Symmetric encryption
 - Uses a private key to both encrypt and decrypt

- Asymmetric encryption
 - Uses both a public key and a private key
Using Encryption to Secure Transmissions and Data (cont’d.)

Figure 2-5, Using a public and private key (asymmetric encryption)
Securing Systems with Firewalls

• Firewall
 – Software or hardware
 – Acts as a protective filter between an internal computer system and an external network
 – Only allows authorized entrants

• Two main types of firewalls
 – A proxy firewall establishes new link between each information packet and its destination
 – A packet-filtering firewall inspects each packet and moves it along an established link
 • Faster but less secure than a proxy firewall
Protecting a System with Routers

• **Router**
 – Moves packets as quickly as possible toward their intended destination

• **Router filtering software**
 – Front line of defense against certain service requests
 – Closes unauthorized ports
 – Determines where servers are located on the network
 – Determines what services are available outside a firewall
 • Internal and external DNS servers
Protecting a System with Routers (cont’d.)

<table>
<thead>
<tr>
<th>service</th>
<th>port</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>21, 22</td>
<td>File transfer</td>
</tr>
<tr>
<td>HTTP</td>
<td>80</td>
<td>Access the Web</td>
</tr>
<tr>
<td>SSH</td>
<td>22</td>
<td>Create a remote session</td>
</tr>
<tr>
<td>Telnet</td>
<td>23</td>
<td>Create a remote session</td>
</tr>
<tr>
<td>POP3</td>
<td>110</td>
<td>Access remote e-mail accounts</td>
</tr>
</tbody>
</table>

Table 2-4, Some of the many ports available on a router and what they do
The DMZ

- Demilitarized zone
 - Location outside the firewalls (or between firewalls)
 - More vulnerable to attack from outside
 - Separates services offered internally from those offered externally
 - Protected by router filters
 - Allows each server a particular service
 - Another firewall exists on the other side
The DMZ (cont’d.)

Figure 2-6, System configuration of a network that includes a firewall, a DMZ, and a router
Protecting Systems with Machine Addressing

- Organizations usually have more machines than IP addresses
 - Handled by dynamically allocating IP addresses
- Organizations also use private class addressing
 - Nodes on the internal network have a different address than what is seen on the outside
 - Network Address Translation (NAT)
 - Conversion of internal to external IP addresses (and vice versa)
 - Usually provided by the firewall
Putting It All Together

• A comprehensive security effort includes:
 – Security policy
 • Well defined, clearly understood, and seriously enforced
 – Properly configured firewalls and antivirus software
 – Restricting physical access to buildings and hardware
 – Reminders and training about security dangers
 – Continual updates and patches
 – Appropriate access controls
Computer Crime

• Topics covered:
 – Types of computer crime
 – Legal safeguards
 – Avenues for prosecuting and punishing computer intruders
Defining Computer Crime

• Intellectual property protections
 – Copyright
 • Protects the expression of the idea, not the idea itself
 – Patent
 • Government grant giving sole right to make, use, and sell an invention for a specified period of time
 – Trade secrets
 • Methods, formulas, or devices providing companies a competitive advantage
 • Kept secret
Prosecuting Computer Crime

• U.S. laws to protect against computer crime
 – Differ widely (both in the U.S. and in other countries)
 – Are open to interpretation

• Prosecuting a computer crime is a complex matter
 – Systems must be replicated entirely or put out of use
 – Perpetrators are very difficult to find
I Fought the Law and the Law Won

- Crackers are being caught and persecuted more than ever
- Corporations are willing to pursue copyright violations much more aggressively
- Legal ways to use software today
 - Purchase the right to use a copy with a EULA agreement
 - Purchase time on a program and connect to it through a network
Ethics in Computing

• Ethics
 – Principles for judging right and wrong
 – Held by an individual or a group

• Ethical systems (along with laws)
 – Help create a stable platform from which to live life comfortably with other people and benefit all

• Organizations of computer professionals
 – Outline ethical standards or codes of ethics
 • IEEE, ACM, Computer Ethics Institute
Ethics in Computing (cont’d.)

• Approach ethical reasoning from different perspectives
 – Orientation toward consequences versus orientation toward rules
 – Orientation toward the individual versus orientation toward the universal
 – Terms
 • Egoism
 • Deontology
 • Utilitarianism
 • Rule-deontology
Software Piracy

• Software piracy
 – Illegal copying of software
 – Detrimental to everyone
 • Spread of viruses
 • Takes away resources for new program development
 • Increases software cost for everyone

• Consequences of piracy
 – May get a virus
 – May lose job
 – May lose share value on stock holdings
Viruses and Virus Hoaxes

• It is unethical to:
 – Write a virus
 – Knowingly pass a virus along

• Advice
 – Use antivirus software
 – Be aware of virus hoaxes
 • Do not pass along
Weak Passwords

- Using weak passwords
 - Could be considered unethical
 - They give online vandals access to systems
 - They might take advantage of any other system weaknesses and cause further damage
Plagiarism

• Academically
 – Enforced through honor codes
 – Results from pressure to perform
 – Long-term consequences
 • Student does not learn information or skills developed by doing the assignment

• Contradicts many ethical standards and rules of conduct

• Avoiding plagiarism
 – Cite the work
Cracking

• Equivalent to virtual trespassing
• Intentional or unintentional
 – Can cause a tremendous amount of economic damage
• Cracker justifications
 – Stupidity should be punished
 – Society is better off for their actions
Health Issues

• Ethics reaches into computer design, particularly ergonomics
 – Poorly designed user interfaces
 • May lead to repetitive strain injuries
 – Computer components or peripherals may be made of toxic materials

• Computers should not harm human beings
 – Rules in ACM, IEEE, and the Computer Ethics Institute
 – OSHA has guidelines addressing these problems
Privacy

- Internet and computerized databases
 - Invasion of privacy easier
 - Spam
 - Unsolicited e-mail
 - Spyware
 - Software to track, collect, and transmit certain information about a user’s computer habits to a third party
 - Cookies
 - Programs used to gather information about a user
 - Stored on the user’s machine
One Last Thought

• Operators of computer systems
 – Part of an overall vulnerability

• Steps to reduce vulnerability
 – Install and update antivirus software, firewalls, and operating system patches
 – Guard against communicating information
 – Reassess balance between ease of use, customer service, time, and cost on one hand, and system security on the other
Summary

• “Hacking” and “hacker”
 – Did not originally have a negative connotation
• Intruders classifications
 – Directed or undirected
• Crackers find holes in systems
 – Intentionally or unintentionally
• How crackers infiltrate systems
 – Viruses, worms, and Trojan programs
 – Social engineering
 – Human manipulation
Summary (cont’d.)

• Total risk to an organization
 – Vulnerability, threat, existing countermeasures

• Intruder targets
 – Confidentiality, integrity, availability, or accountability of information

• Countermeasures in managing security
 – Antivirus software, system updates, physical restrictions, and backup systems

• Users support cracking by using weak passwords
 – Encrypt information to secure communications
Summary (cont’d.)

• Use firewalls and routers
• It is difficult to prosecute computer attackers
• Many issues must be viewed from an ethical perspective
• Privacy is protected by law
 – Many tools available to protect privacy
• Computer and network security
 – Everyone’s responsibility