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Exponentials 

 

1. Motivating Example 

 

Suppose the population of monkeys on an island increases by 6% annually.  Beginning with 455 

animals in 2008, estimate the population for 2011 and for 2025. 

 

Each year the number of monkeys increases by 6%.  To determine the number of monkeys in 

2011, begin by finding the number of monkeys in 2009. 

 

Year   

2008 Population     

 6% Increase               

2009 Population       

 6% Increase                 

2010 Population       

 6% Increase                 

2011 Population       

 

There were approximately 542 monkeys on the island in 2011.  To find this value, only a few 

steps were needed; however, the process to find the population in 2025 would take much more 

work. 

 

Making some observations: 

 

2008:     

 

2009:                 (      )     (    ) 
 

2010:    (    )          (    ) 
    (    )(      )     (    )(    )     (    )  

 

2011:    (    )          (    )  

    (    ) (      )     (    ) (    )     (    )  
 

 

Thus, the population from year to year is increased by multiplying the previous year’s population 

by a factor of       .  One could then safely say that this process can be used to estimate the 

population 17 years later (2025) and whose value is 

 

   (    )      (      )       

 

The island then has a population of 1225 monkeys in 2025. 

 

 

 

 

 

 

 

 

Begin by multiplying the current 

population in 2008 by the percent of 

increase.  Then add this result to the 

2008 population to determine the 2009 

population. 

 

In reality, 0.3 or 0.9 of a monkey does 

not make much sense.  Feel free to round 

to the nearest whole number for 

applications. 
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2. Exponential Growth and Decay 

 

The previous is an example of geometric growth.  Any quantity that increases by being multiplied 

by the same value on regular intervals is said to grow geometrically.  In other words, each 

subsequent value is equal to the previous value multiplied by some constant multiplier,  . 

 

In the previous scenario, the constant multiplier was (    )  (      )  (   ).  Letting 

  (   ) we can express a general geometric function as 

 

     
  

 

where, 

 

    is the initial condition (initial value) 

 

   is the multiplier, defined as   (   ) where   is the growth rate as a percent. 

 

o If the problem presented is that of decay (the value is getting smaller at a 

multiple rate), then       . 

 

o Typically,       .  However it is possible for | |   , especially in 

biology. 

 If     then you are referring to growth and  

 If     then you are referring to decay. 

 

   is the independent variable, often a measure of time. 

  

The above is an example of discrete time.  Discrete time views values of variables as occurring at 

distinct, separate points in time. Here, a variable moves from one value to another as time moves 

from time period to the next.  The number of measurements between any two time periods is 

finite.  Measurements are typically made at sequential integer values of the time variable. 

 

For instance, if calculating  

 annual plant populations, 

 the number of organisms with discrete life stages (e.g., juveniles or adults), or 

 small population sizes (i.e., identifiable individuals) 

then one would use discrete time models. 

 

In contrast, continuous time views variables as having a particular value for potentially an 

infinitesimally short amount of time.  Between any two points in time there are an infinite number 

of other points in time.  The time variable ranges over the entire real number line, or depending on 

the context, over some subset of it such as the non-negative reals.  The continuous time model is 

often referred to as exponential growth or exponential decay.   

 

Here, one would use continuous time models if trying to determine 

 bacterial growth, 

 the concentration of a chemical over the course of time, or  

 large population sizes (i.e., the individual unit is not identifiable). 
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Ex.)  A fish population increases from 357 to 411 fish within one year.  Assume that the 

population keeps growing at the same rate, estimate the population five years later (5 years 

from the first count). 

 

Here,       .  After 1 year there are 411 fish, or when          . 

 

     
  

        ( ) 
   

   
   

        

 

                           

 

The question asks for the population 5 years later.  The task is to find   when    . 

     
                  

 

After 5 years, there are approximately 722 fish. 

 

 

Ex.)  Infant Mortality Rate (Number of infant deaths per 1,000 live births).  The infant mortality 

in the United States was 8.81 in 1990 and it declined to 6.92 for 2000 (these are actually five 

year averages, source: United Nations).  

Find an exponential model for the data, and estimate the infant mortality for 2010 and for 

2025. 

 

There is no rule that forces us to measure time in years.  For this example decades are more 

appropriate.  The initial value is 8.81.  After 1 decade (   ) the value is 6.92  

 

     
  

          ( ) 
    

    
   

         
 

Thus, the mortality rate is declining by 21.45%  (     ) per decade.   

If we set     for 2000, the year 2010 corresponds to     (one decade after 2000) and 

the year 2025 is       decades after 2000.  Therefore our predictions are  

 

 

                   

and 

                       
 

Both are given in deaths per 1,000 live births. 
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Ex.)  The population of the City of Radford grew from 15,859 in 2000 to 16,408 in 2010.  

Assuming an exponential model, what is the annual growth rate? 

 

     
  

 

            (  ) 

 
     

     
     

(
     

     
)

 
  
 (   )

 
   

 

         

 

                      
 

The annual growth rate is approximately 0.34%. 

 

 

Ex.)  In 1890 Shakespeare enthusiasts released 60 European starlings in New York’s Central Park.  

A century later its estimated North American population was 200 million (stanford.edu).  

What is the annual growth rate, and when will the population reach one billion? 

 

     
  

 

             (   ) 

 
         

  
      

(
         

  
)

 
   

 (    )
 
    

 

         
 

                      

 

The annual growth rate is approximately 16.21%. 

 

To find when the population will reach one billion, start with the initial population of 200 

million in the year 1990. 

 

     
  

 

             
            (      )  

 
             

           
 (      )  

 

  (      )  
 

        (      )  

 

         (      ) 

 
    

   (      )
   

 

         

 

In approximately another 11 years, the 

population will reach 1 billion.  Therefore, in the 

year 2001 the starling population will exceed 1 

billion. 
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Ex.)  Elephantdatabase.org reports that the total population of elephants in Africa declined from 

472,134 elephants in 2007 to 421,955 animals in 2012.  Assuming an exponential decay, 

predict when the population will be down to 350,000 elephants. 

 

     
  

 

                ( ) 

 
       

       
    

(
       

       
)

 
 

 (  )
 
  

 

         

 

To find when the population will be down to 350,000, start with the initial population of 

472,134 in 2007. 

 

     
  

 

               (      )  

 
       

       
 (      )  

 

   
       

       
    (      )  

 

   
       

       
     (      ) 

 

   
       
       

   (      )
   

 

         
 

In 2020 the elephant population will be down to 350,000. 
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3. Doubling Time 

 

Doubling time is the time it takes to double a value in an exponential model. 

 

Given any initial population, say   , twice this value is    . 

 

To determine the doubling time, solve 

 

       
  

for  . 

 

     

           

  
    

    
 

 

Recall,      . 

 

 

Ex.)  Suppose a population of rats is growing at an annual rate of 12%.  Estimate how long it 

would take for the rat population to double. 

 

                  

  
    

    
 

    

       
        

 

After approximately 6.12 years the rat population doubled. 

 

 

Ex.)  A lung cancer cell doubles about every three months (mitosis). The cancer is detected in X-

rays when about 1 billion cells are present.  Beginning with a single malignant cell, how long 

does it take until the cancer is detected? 

 

Let’s measure time in years.  In this case we know the doubling time,  

 

                      
 

What do not have is the growth rate or growth multiplier. 

 

  
    

    
 

 

     
    

    
 

 

     
    

    
 

 

         
(
    
    

)
 

     

 

The model for this problem is then 

   (  )  

The cancer is detected when 
there are 1 billion cells, i.e., find 
  when                 
 
               (  )  
                    (  )  

         
 

     
   

         

 

After approximately 7.5 years the 

cancer is detectable.
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4. Half-Life 

 

Half-Life is the time it takes for a value to be reduced by one-half.  As we did with doubling time, 

we can develop a formula to determine the half-life of a quantity. 

 

 Given any initial value, say   , one-half this value is then 
 

 
  . 

 

To determine the half-life time, solve 

 
 

 
      

  

for  . 

 
 

 
    

 

   
 

 
       

  
   
 
 

    
 

 

 

Ex.)  Suppose a radioactive isotope of an element was placed in storage, decaying at a rate of 

6.25% annually.  How long would it take for only one-half of the element to remain? 

 

Recall,                       

 

The half-life of the element is then, 

 

  
   
 
 

         
          

 

After approximately 10.74 years, half of the element will remain. 

 

 

  



 8 

Ex.)  The half-life of the radioactive isotope 
14

C is 5730 years (abundance 
14

C:
12

C = 1:10
12

).  A 

piece of wood measures only 20% of the common 
14

C:
12

C ratio.  How old is it? 

 

In this case the half-life is known.   

 

  
   
 
 

    
 

 

     
   
 
 

    
 

 

     
   
 
 

    
 

 

         
(
   
 
 

    
)

 

          

 

The model for this problem is then 

    (       )
  

 

If the final amount desired is 20% of the original amount, we will solve  

 
        (       )

  
for  . 

 

    (       )  

          (       )  

           (       ) 
      

   (       )
   

           
 

The wood is approximately 13,411 years old. 

 

 

5. Logarithmic Scale 

 

Using logarithms, let’s rewrite the basic exponential equation,      
 . 

 

        (   
 ) 

        (  )     ( 
 ) 

        ( )       (  ) 
 

Thus, 

     
          ( )       (  ) 

 

If y is an exponential function, then the logarithm of   is a linear function with slope      ( ) 
and y-intercept      (  ). 
 

By changing the scales of the typical x-y plane to logarithmic scales, an exponential function looks 

like a straight line. 
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For instance, consider the exponential function     (      )  (from the starling example 

earlier).   

 

Graphing, with Excel, one can see the difference  

  0 2 4 8 10 16 20 40 50 

  60 81.03 109.4 199.6 269.5 663.8 1210.7 24428.2 109730 
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Ex.)  The world population (in millions) is given in the table 

to the right.  Plot the world population as a function of 

the year,  , then graph using a logarithmic scale. 

 

 

You can use Excel to assist. 

Begin by constructing the table.  You may either use 

rows or columns (as displayed in the current table).   

 

Highlight the entries you wish to display on the graph.  

Click on “Insert” and find the “Scatter” button.  Select 

the style of your choice.  Here, let’s just plot the points 

(“Scatter with only Markers”). 

 

To label the axes, click on the graph.  “Chart Tools” should then appear.  Click on “Layout” 

and select “Axis Titles.”  Choose the axis you wish to label.  Let’s use Year for the 

horizontal axis and Population in Millions for the vertical axis. 

 

 
 

Before plotting with the logarithmic scale, recall the population is given as a value in the 

millions (i.e., 791 on the table corresponds to 791 million = 791,000,000).  Convert each 

value by multiplying by 1,000,000, then take the logarithm of each (base 10). 
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Year 
Population 

(Millions) 

1750 791 

1800 978 

1850 1262 

1900 1650 

1950 2519 

1960 2982 

1970 3962 

1980 4435 

1990 5263 

2000 6070 

2010 6972 
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To plot using a logarithmic scale, graph as done previously using the values from the 

logarithm found. 

 

  
 

8.8

9

9.2

9.4

9.6

9.8

10

1700 1750 1800 1850 1900 1950 2000 2050

lo
g 

(h
u

m
an

 p
o

p
u

la
ti

o
n

) 

Year 

World Population 


