ITEC122 2007alalibarland
 Summations

Ian Barland

Rosen p.229-232 has a fine introduction to summations. The key element to remember is that \sum is just a notation; whenever you see it you should mentally expand it into the sum it represents.

Here are a few problems from Rosen that introduce some standard tricks:

- Rosen 3.2, \#15a:

$$
\begin{aligned}
\sum_{j=0}^{8} 3 \cdot 2^{j} & =3 \cdot 2^{0}+3 \cdot 2^{1}+3 \cdot 2^{2}+\cdots+3 \cdot 2^{8} \\
& =3\left(2^{0}+2^{1}+2^{2}+\cdots+2^{8}\right) \\
& =3 \cdot \sum_{j=0}^{8} 2^{j} \\
& =3 \cdot\left(2^{9}-1\right) \text { by Rosen } 3.2 \text { Th'm } 1
\end{aligned}
$$

The handy trick is that you can pull out the constant factor 3 .

- Rosen 3.2, \#17d: The previous trick is often useful in double sums:

$$
\begin{aligned}
\sum_{i=0}^{2} \sum_{j=0}^{3} i j & =\sum_{i=0}^{2}\left(\sum_{j=0}^{3} i j\right) \\
& =\sum_{i=0}^{2}\left(i \sum_{j=0}^{3} j\right) \\
& =\sum_{i=0}^{2}(i \cdot 6) \\
& =6 \sum_{i=0}^{2} i \\
& =6 \cdot 3 \\
& =18
\end{aligned}
$$

Why was it valid, in the first line, to factor out i from the inner sum? Because (with respect to the inner sum over j) it was a constant. Again, writing it out explicitly makes this clear.

- Difference of sums: When a sum's initial index isn't a nice even 0 or 1 , often we can express the sum as a difference of two others. See Rosen Section 3.2, Example 15:

$$
\sum_{k=50}^{100} k^{2}=\sum_{k=1}^{100} k^{2}-\sum_{k=1}^{49} k^{2}
$$

, and now each of the two sums can be individually computed from Section 3.2, Table 2.

- $\sum_{i=4}^{7}(2 i-6)=2+4+6+8=20$. This sum notation can also be written $\sum_{i \in\{4,5,6,7\}}$. or $\sum_{i \in[4,7]}$.
Note: there's an easier summation notation for $2+4+6+8$: If we let $j=$ $i-3$, then when $i=4$ then $j=1$; and when $i=7$ then $j=4$; thus

$$
\sum_{i=4}^{7}(2 i-6)=\sum_{j=1}^{4} 2 j
$$

. (Or even start the sum from 0 :-)

- Know this sum cold:

$$
\sum_{i=0}^{n} i=n(n+1) / 2
$$

. [the triangular numbers]

- Know this sum cold as well:

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

. [examples for $\mathrm{n}=2,3$]

- This previous example generalizes:

$$
\sum_{i=0}^{n} b^{i}=\left(b^{n+1}-1\right) /(b-1)
$$

. $[$ consider $b=10: 1+10+100+1000=1 / 9 * 9999]$
When $b<1$, we can take the infinite sum. In particular, $1+1 / 2+1 / 4+$ $+\ldots=2.1+1 / 10+1 / 100+\ldots=1.11111=10 / 9$. Note that $.9+.9^{2}+\ldots$ will also converge (to what?).
Similarly: Is . $432432432432 \ldots$ rational $?=0.432 * \sum_{i=0}^{\infty} 1 / 1000^{i}=0.432(-1 /(-999 / 1000))=$ 432/999. Indeed, this generalizes: any repeating-decimal is rational.

- Now try: $\sum_{i=51}^{100} 2^{i}$. Split into two different sums; subtract. Actually, it's a bit moot for 2^{i}, because the first 50 terms altogether weren't as big as the 51st, and the 51-54rd are nearly sixteen times as big.
- Double sums:
$\sum_{i} \sum_{j} i$
$\sum_{i} \sum_{j} i j$
$\sum_{i} \sum_{j} j^{i}$
What if we switch order? To find out, expand!
- Consider expectations:
the "mean" value of a fair six-sided die is $\sum i \cdot ;(1 / 6)$. For an n-sided die, $\sum i / n$.
How about for a weighted 6 -sided die, where the two-pips has been artfully changed into a three-pips side:
Expected number of tosses until a coin(die) comes up heads(6)? ... Can expand as rows and columns; arrange creatively and re-add. [Okay, it's a bit fishy w/ infinite series, but we'll hush that up.]

