lect14-graph-marriage

- Questions, hwll,hul2
- FSM vs (right-regular) grammars vs.
- The Marriage Problem ul ar expressions
- Intro to Graphs
- do fin
- terms
- representations

A FSM for recognizi.ug floats. Grammar \supsetneq
$x=789 . j$

or - $D D^{*}$ or $-D$ sits $D D^{*} \cdot D D^{*}$
$x=-3$;
$([+-])\left(D D^{*}\right)\left(. D D^{*}\right)$
Cone of" "optional

$$
([+-]) D^{*}\left(\cdot D D^{*}\right)
$$

A Grammar for floats

lect14-graph-marriage
What is a grammar generating all strings match the reg. exp. $+$

Thin: Given an re. R, there exists a Grammar G so that $L(G)=L(R)$

Deft: A right-regular Grammar is a grammar where each rok: - has a single non-terminal e.h.s.

- the r.h.s. has only at most one non terminal, which oculus right-most.
Th'm: For any reg. exp R, there is a FSM SM such that $L(M)$ (all severus of inn pit which lead to a designated "end state") $=L(R)$.
Beer- Both thins an go the other dinctiog

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{c}
\text { Graphs } \\
\begin{array}{c}
\text { defin } \\
\text { terms }
\end{array}
\end{array} \quad(\text { Rosen chpt.9) } \\
\quad(\text { chpt. } 8 \text { in Sel.) }
\end{array} \\
& \text { basic notions } \\
& \text { Defin: A Graph } G:\langle V, E\rangle \text { vhere } \\
& V \text { is a set of vertices, } \\
& \text { and } E \subseteq V_{v} V \\
& E_{X:} \quad V=\{R O A, C L T, L A X, O R D\} \\
& E=\{\langle R O A,(L T\rangle,\langle R O A, O R D\rangle, \\
& \text { A graph is undirated if } \forall x, y \in V
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { For any } v \in V, \\
\text { out } \cdot \operatorname{deg}(v)=|\{w \quad \mid\langle v, v\rangle \in E\}|
\end{array} \\
& \text { De } f_{n}^{\prime} \text { : A path in } G=\left(V_{i}, \text { is }^{2}\right. \\
& \text { a sequence of vertices } \\
& \text { such that } \forall i<n_{n} v_{3}\left\langle v_{i}, v_{n}\right\rangle \in E \\
& \left\langle v_{1}, v_{2}\right\rangle \in E \\
& \left\langle v_{2}, v_{3}\right\rangle \in E \\
& \left\langle v_{n-1}, v_{n}\right\rangle \in E
\end{aligned}
$$

$$
\begin{aligned}
& \text { The marriage problem: } \\
& Q: \text { Terminate? } \\
& \text { Yes- } \\
& \text { proof: Each man makes } \\
& \text { at must } n \text { moves } \\
& \text { so at most } n^{2} \text { move total, } \\
& \text { Def'n: a matching is optimal } \\
& \text { for } k \text { if they are matched } \\
& \text { highest choice in any stalle } \\
& \text { matehing. } \\
& \text { Thin: The suitor algorithm gives } \\
& \text { eacroof. Consider the first } \\
& \text { Step whe ars } M \text { moves avay from } W \text {, } \\
& \text { (his optimal choica) } \\
& \text { This happened becauss he was }
\end{aligned}
$$

$$
\begin{aligned}
& \text { there is sime stabh mat cing } x \text {. } \\
& W: \ldots, N, \ldots M, \ldots \text { (sina } M \text { got gind) } \\
& \text { Wi, No. } \\
& \text { Lemma: If } M \text { is matched vinina }
\end{aligned}
$$

$$
\begin{aligned}
& \text { then } M \text { is W's pessimal (least } \\
& \text { Pref ferred) choice, of any stalk } \\
& \text { Proof: Consider a matohing } S \\
& \text { Which is stable, but } W \text { is matchid } \\
& \text { with } N \text {. Then, } W: \cdots, \ldots, M, \ldots \\
& \text { If } W \text { prefereal } M \text { to } N \\
& \text { then } S \text { wouldit be stable: }
\end{aligned}
$$

