lect11-struct-induct

$$
\begin{aligned}
& \sum_{i=1}^{200}\left(\sum_{j=1}^{300}\left(5 i^{2}-j\right)\right)=\sum_{i=1}^{300}\left(\sum_{j=1}^{200} 5_{i}^{i}-\sum_{j=1}^{300} j\right) \\
& \sum_{i=1}^{200}\left(\left(5 i^{2}-1\right)+\left(5 i^{2}-2\right)+\cdots+\left(5 i^{2}-300\right)\right) \\
& =\sum_{i=1}^{200}\left(300 \cdot 5 i^{2}-1-2-3 \cdot \cdots-300\right) \\
& =\sum_{n=1}^{200}\left(1500_{i}^{2}-(1+2+3+\cdots+300)\right) \\
& =\sum_{i=1}^{200}\left(1500^{2}-\frac{300(301)}{2}\right)=\left(\sum_{i=1}^{200} 1300 i^{2}\right)-\left(\sum_{i=1}^{20002001} 2\right) \\
& =\left(1500 \sum_{i=1}^{200} \lambda^{(2)}\right)-\frac{200 \cdot 300 \cdot 301}{2} \\
& =1500\left(\frac{(200 \cdot 201 \cdot 401}{6}\right)-200 \cdot 150 \cdot 301
\end{aligned}
$$

lect11-struct-induct
Prove by induction: ($p .277,6 \mathrm{ed})$

$$
P(n)=" A_{n} 2^{n} \times 2^{n} \text { checkerboard }
$$

can be tiled by \exists with one corner missing."
(a) $P(0)$ is the statement:
"A $|x|$ checkerboard can be tiled by $\#, 4$ one corner missing."
(b) $P(\partial)$ trove

(c) What is ind. hyp? $P(k)$
$=$ " $A 2^{k} \times 2^{k}$ can be tiled.... 1 left over".
(d) What to show? $P(k+1)$:

$$
\text { "A } 2^{k+1} \times 2^{k+1} \text { can be til } \ldots \text { (lIft } \text { over." }
$$

(e) Show $P(k)-(P(k+1) \cdot$ Must show can tile 2^{k+1}
but 1 know $]_{2}{ }^{\text {k }}$

(f) We know $P(0)$; We know $\forall k \geq 0, P(k) \rightarrow P(k+1)$
S_{0} by induction $\forall n . P(n)$.

Strong induction:
$P(n)$:" A chocolate bar w/ ontic nous can be broken into singletons requires exactly n-breaks."

$$
\begin{aligned}
& \underset{\substack{\text { Base } \\
\text { case }}}{\text { n. }} \frac{P(1)="}{} \\
& \text { tel I have a } k+1 \text { piece bars } \\
& \text { I have a show } k \text { breaks req'd. } \\
& \text { Faulty: I break off one pice, to } \\
& \text { Jet a singleton plus a } k \text {-piece } \\
& \text { ban. This polk one stol, } \\
& \text { plus (by P(} k \text {)), } k-1 \text { other, others } \\
& \text { were regis for a to til of } k \text {. } \\
& \text { Flaw: What if we make a } \\
& \text { first break different from one } \\
& \text { pice? }
\end{aligned}
$$

Make any break- into sizes

$$
j \text { and }(k+1)-j \text {. }
$$

If I know $P(j)$ (requires $j-1$) and $P(\underbrace{k+1-j)}$ (requires $k+1-j-1)$,
Then it means my $k+1$-piece bar required $1+(j-1)+(k+1-j-1)$ $=k$ breaks.
This is "strong induction":

$$
\begin{aligned}
& \forall p(0),(P(0) \wedge P(1) \wedge P(2) \cdots \wedge P(k)) \rightarrow P\left(k_{k+1}\right) .
\end{aligned}
$$

Then conclude $\forall \eta$. $P(n)$.
lect11-struct-induct
Recursive formulas,
 how many tiles are needed?
Let $f(k)$ be $\#$ of tiles reeled for $2^{k} \times 2^{k}$.

$$
\begin{array}{|c|c|}
\hline & \\
\vdots & \vdots \\
\hdashline & \vdots \\
\vdots & \\
\hline
\end{array}
$$

$$
\begin{aligned}
f(0) & =0 \\
f(1) & =1 \\
f(2) & =5 \\
f(3) & =21 \\
f(k) & =4 \cdot f(k-1)+1
\end{aligned}
$$

lect11-struct-induct

Proof on trees:

Induct jive step:

2. K, right. size $<2^{\sqrt{k .-r i g h t . h a i g h t ~}}$ ind hyp.

$$
=1+2 \cdot 2^{\max (\sim)}
$$

$$
=1+2_{k \text { height }}^{1+m(\sim)}
$$

$=1+2^{\text {k.height }}$ by code

