The State-transition model

The set of global states =
\[s_0 \times s_1 \times \ldots \times s_m \]
\{s_k \text{ is the set of local states of process } k\}

Each transition is caused by an action of an eligible process.
We reason using interleaving semantics
Correctness criteria

- Safety properties
 - Bad things never happen

- Liveness properties
 - Good things eventually happen
Example 1: Mutual Exclusion

```plaintext
Process 0
  do true →
    Entry protocol
    Critical section
    Exit protocol
  od

Process 1
  do true →
    Entry protocol
    Critical section
    Exit protocol
  od
```

Safety properties
(1) There is no deadlock
(2) At most one process enters the critical section.

Liveness property
A process trying to enter the CS must **eventually succeed**.
(This is also called the **progress property**)

CS
Testing: Apply inputs and observe if the outputs satisfy the specifications. Fool proof testing can be painfully slow, even for small systems. Most testing are partial.

Proof: Has a mathematical foundation, and a complete guarantee. Sometimes not scalable.
Since **testing is not a feasible** way of demonstrating the correctness of program in a distributed system, we will use **some form of mathematical reasoning** as follows:

- Assertional reasoning of proving safety properties
- Use of well-founded sets of proving liveness properties
- Programming logic
- Predicate transformers
Review of Propositional Logic

Example: Prove that $P \Rightarrow P \lor Q$

Pure propositional logic is sometimes not adequate for proving the properties of a program, since propositions can not be related to program variables or program state. Yet, an extension of propositional logic, called \textit{predicate logic}, will be used for proving the properties.
Predicate logic is an extension of propositional logic
cf. A proposition is a statement that is either true or false.

A predicate specifies the property of an object or a relationship among objects. A predicate is associated with a set, whose properties are often represented using the universal quantifier ____ (for all) and the existential quantifier ____ (there exists).

\(<\text{quantifier}>\langle\text{bound variable(s)}\rangle:\langle\text{range}\rangle::\langle\text{property}\rangle\>

(ex) \(\exists j: j \in N(i) :: c[j] = c[i] + 1 \mod 3\)
Invariant means: a logical condition which should always be true.

1. The mutual exclusion problem. $N_{CS} \leq 1$
 where N_{CS} is the Total number of processes in CS at any time

2. Producer-consumer problem. $0 \leq N_p - N_c \leq \text{buffer capacity}
 (N_p = \text{no. of items produced, } N_c = \text{no. of items consumed})
What can be a safety invariant for the readers and writers problem?

- Only one write can write to the file at a time.
- When a writer write to the file, no process can read.
- Many processes can read at the same time.

Let N_w denote the number of writer processes updating the file and N_r denote the number of reader processes reading the file.

$$
((N_w = 1) \land (N_r = 0)) \lor ((N_w = 0) \land (N_r \geq 0))
$$
define \ c_1, \ c_2 \ : \ \text{channel}; \ \{\text{init} \ c_1 = \Phi, \ c_2 = \Phi\}\\
r, t : \text{integer}; \ \{\text{init} \ r = 5, \ t = 5\}\\

\{\text{program for T}\}\{\text{program for R}\}\n1 \quad \text{do} \quad t > 0 \rightarrow \text{send msg along } c_1; \ t := t - 1\\
2 \quad \square \quad \neg \text{empty} \ (c_2) \rightarrow \text{rcv msg from } c_2; \ t := t + 1\\
\quad \text{od}\\
3 \quad \text{do} \quad \neg \text{empty} \ (c_1) \rightarrow \text{rcv msg from } c_1; \ r := r+1\\
4 \quad \square \quad r > 0 \quad \rightarrow \quad \text{send msg along } c_2; \ r := r-1\\
\quad \text{od}\\

We want to prove \textit{the safety property} \(P \):\\
P \equiv n_1 + n_2 \leq 10
n1, n2 = # of msg in c1 and c2 respectively.
We will establish the following invariant:

\[I \equiv (t \geq 0) \land (r \geq 0) \land (n1 + t + n2 + r = 10) \]
(I implies P). Check if I holds after every action.

{program for T}
1 do t > 0 → send msg along c1; t := t -1
2 □ ¬empty (c2) → rcv msg from c2; t := t+1
 od

{program for R}
3 do ¬empty (c1) → rcv msg from c1; r := r+1
4 □ r > 0 → send msg along c2; r := r-1
 od

Use the method of induction
Eventuality is tricky. There is no need to guarantee when the desired thing will happen, as long as it happens.
Type of Liveness Properties

Progress Properties
- If the process wants to enter its critical section, it will eventually do.
- No deadlock?

Reachability Properties
- The question is whether S_t is reachable from S_o?
- The message will eventually reach the receiver.
- The faulty process will be eventually diagnosed.

Fairness Properties
- The question is if an action will eventually be scheduled.

Termination Properties
- The program will eventually terminate.
Proving liveness

Use of well-founded sets of proving liveness properties

If there is no infinite chain like

\[w_1 \downarrow w_2 \downarrow w_3 \downarrow w_4 \ldots, i.e. \]

If an action changes the system state from \(s_1 \) to \(s_2 \)

\[f(s_i) \downarrow f(s_{i+1}) \downarrow f(s_{i+2}) \ldots \]

then the computation will definitely terminate!

\(f \) is called a measure function

\(w_1, w_2, w_3, w_4 \in WF \)

WF is a well-founded set whose elements can be ordered by \(\downarrow \)
Proof of liveness: an example

Clock phase synchronization

System of n clocks ticking at the same rate. Each clock is 3-valued, i.e., it ticks as $0, 1, 2, 0, 1, 2...$ A failure may arbitrarily alter the clock phases. The clocks need to return to the same phase.
Clock phase synchronization

{Program for each clock}
(c[k] = phase of clock k, initially arbitrary)

\[
\text{do } \exists j: j \in N(i) :: c[j] = c[i] + 1 \mod 3 \rightarrow \\
\qquad c[i] := c[i] + 2 \mod 3 \\
\forall j: j \in N(i) :: c[j] \neq c[i] + 1 \mod 3 \rightarrow \\
\qquad c[i] := c[i] + 1 \mod 3
\]

od

Show that eventually all clocks will return to the same phase (convergence), and continue to be in the same phase (closure)
Proof of convergence

$d[i] = 0$ if no arrow points towards clock i;

$= i + 1$ if a← pointing towards clock i;

$= n - i$ if a→ pointing towards clock i;

$= 1$ if both ← and → point towards clock i.

By definition, $D \geq 0$.

Also, D decreases after every step in the system. So the number of arrows must reduce to 0.

$D = 0$ means all the clocks are synchronized.