# Section 9.7/12.8: Triple Integrals in Cylindrical and Spherical Coordinates 

Practice HW from Stewart Textbook (not to hand in)
Section 9.7: p. 689 \# 3-23 odd
Section 12.8: p. 887 \# 1-11 odd, 13a, 17-21 odd, 23a, 31, 33

## Cylindrical Coordinates

Cylindrical coordinates extend polar coordinates to 3D space. In the cylindrical coordinate system, a point $P$ in 3D space is represented by the ordered triple $(r, \theta, z)$.
Here, $r$ represents the distance from the origin to the projection of the point $P$ onto the $x-y$ plane, $\theta$ is the angle in radians from the $x$ axis to the projection of the point on the $x-y$ plane, and $z$ is the distance from the $x-y$ plane to the point $P$.


As a review, the next page gives a review of the sine, cosine, and tangent functions at basic angle values and the sign of each in their respective quadrants.

Sine and Cosine of Basic Angle Values

| $\theta$ Degrees | $\theta$ Radians | $\cos \theta$ | $\sin \theta$ | $\tan \theta=\frac{\sin \theta}{\cos \theta}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $\cos 0=1$ | $\sin 0=0$ | 0 |
| 30 | $\frac{\pi}{6}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{3}$ |
| 45 | $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1 |
| 60 | $\frac{\pi}{3}$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\sqrt{3}$ |
| 90 | $\frac{\pi}{2}$ | 0 | 1 | undefined |
| 180 | $\pi$ | -1 | 0 | 0 |
| 270 | $\frac{3 \pi}{2}$ | 0 | -1 | undefined |
| 360 | $2 \pi$ | 1 | 0 | 0 |

Signs of Basic Trig Functions in Respective Quadrants

| Quadrant | $\cos \theta$ | $\sin \theta$ | $\tan \theta=\frac{\sin \theta}{\cos \theta}$ |
| :---: | :---: | :---: | :---: |
| I | + | + | + |
| II | - | + | - |
| III | - | - | + |
| IV | + | - | - |

The following represent the conversion equations from cylindrical to rectangular coordinates and vice versa.

## Conversion Formulas

To convert from cylindrical coordinates $(r, \theta, z)$ to rectangular form $(x, y, z)$ and vise versa, we use the following conversion equations.

From polar to rectangular form: $x=r \cos \theta, y=r \sin \theta, z=z$.

From rectangular to polar form: $r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}$, and $z=z$

Example 1: Convert the points $(\sqrt{2}, \sqrt{2}, 3)$ and $(-3, \sqrt{3},-1)$ from rectangular to cylindrical coordinates.

## Solution:

Example 2: Convert the point $\left(3,-\frac{\pi}{4}, 1\right)$ from cylindrical to rectangular coordinates.

## Solution:

## Graphing in Cylindrical Coordinates

Cylindrical coordinates are good for graphing surfaces of revolution where the $z$ axis is the axis of symmetry. One method for graphing a cylindrical equation is to convert the equation and graph the resulting 3D surface.

Example 3: Identify and make a rough sketch of the equation $z=r^{2}$.

## Solution:



Example 4: Identify and make a rough sketch of the equation $\theta=\frac{\pi}{4}$.

## Solution:



## Spherical Coordinates

Spherical coordinates represents points from a spherical "global" perspective. They are good for graphing surfaces in space that have a point or center of symmetry.

Points in spherical coordinates are represented by the ordered triple

$$
(\rho, \theta, \phi)
$$

where $\rho$ is the distance from the point to the origin $O, \theta$, where is the angle in radians from the $x$ axis to the projection of the point on the $x-y$ plane (same as cylindrical coordinates), and $\phi$ is the angle between the positive $z$ axis and the line segment $\overrightarrow{O P}$ joining the origin and the point $\mathrm{P}(\rho, \theta, \phi)$. Note $0 \leq \phi \leq \pi$.


## Conversion Formulas

To convert from cylindrical coordinates $(\rho, \theta, \phi)$ to rectangular form $(x, y, z)$ and vise versa, we use the following conversion equations.

From to rectangular form: $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$
From rectangular to polar form: $\rho^{2}=x^{2}+y^{2}+z^{2}, \tan \theta=\frac{y}{x}$, and

$$
\phi=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)=\arccos \left(\frac{z}{\rho}\right)
$$

Example 5: Convert the points $(1,1,1)$ and $(-3,-\sqrt{3}, 2 \sqrt{2})$ from rectangular to spherical coordinates.

## Solution:

Example 6: Convert the point $\left(9, \frac{\pi}{4}, \pi\right)$ from rectangular to spherical coordinates.

## Solution:

Example 7: Convert the equation $\rho=2 \sec \phi$ to rectangular coordinates.

## Solution:

Example 8: Convert the equation $\phi=\frac{\pi}{3}$ to rectangular coordinates.

Solution: For this problem, we use the equation $\phi=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$. If we take the cosine of both sides of the this equation, this is equivalent to the equation

$$
\cos \phi=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

Setting $\phi=\frac{\pi}{3}$ gives

$$
\cos \frac{\pi}{3}=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} .
$$

Since $\cos \frac{\pi}{3}=\frac{1}{2}$, this gives

$$
\frac{1}{2}=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

or

$$
\sqrt{x^{2}+y^{2}+z^{2}}=2 z
$$

Hence, $\sqrt{x^{2}+y^{2}+z^{2}}=2 z \quad$ is the equation in rectangular coordinates. Doing some algebra will help us see what type of graph this gives.

Squaring both sides gives

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=(2 z)^{2} \\
& x^{2}+y^{2}+z^{2}=4 z^{2} \\
& x^{2}+y^{2}-3 z^{2}=0
\end{aligned}
$$

The graph of $x^{2}+y^{2}-3 z^{2}=0$ is a cone shape half whose two parts be found by graphing the two equations $\pm \sqrt{x^{2}+y^{2}+z^{2}}=2 z$. The graph of the top part, $\sqrt{x^{2}+y^{2}+z^{2}}=2 z$, is displayed as follows on the next page.


Example 9: Convert the equation $x^{2}+y^{2}=z$ to cylindrical coordinates and spherical coordinates.

Solution: For cylindrical coordinates, we know that $r^{2}=x^{2}+y^{2}$. Hence, we have $r^{2}=z$ or

$$
r= \pm \sqrt{z}
$$

For spherical coordinates, we let $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$, and $z=\rho \cos \phi$ to obtain

$$
(\rho \sin \phi \cos \theta)^{2}+(\rho \sin \phi \sin \theta)^{2}=\rho \cos \phi
$$

We solve for $\rho$ using the following steps:

$$
\begin{aligned}
\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta=\rho \cos \phi & \text { (Square terms) } \\
\rho^{2} \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\rho \cos \phi & \text { (Factor } \left.\rho^{2} \sin ^{2} \phi\right) \\
\rho^{2} \sin ^{2} \phi(1)-\rho \cos \phi=0 & \text { (Use identity } \left.\cos ^{2} \theta+\sin ^{2} \theta=1\right) \\
\rho\left(\rho \sin ^{2} \phi-\cos \phi\right)=0 & \text { (Factor } \rho) \\
\rho=0, \rho \sin ^{2} \phi-\cos \phi=0 & \text { (Set each factor equal to zero and solve) } \\
\rho=0, \rho=\frac{\cos \phi}{\sin ^{2} \phi} &
\end{aligned}
$$

## Triple Integrals in Cylindrical Coordinates

Suppose we are given a continuous function of three variables $f(r, \theta, z)$ expressed over a solid region $E$ in 3D where we use the cylindrical coordinate system.


Then

$$
\begin{aligned}
& \iiint_{E} f(r, \theta, z) d V=\int_{\theta=\theta_{1}}^{\theta=\theta_{2}} \int_{r=g_{1}(\theta)}^{r=g_{2}(\theta)} \int_{z=h_{1}(r, \theta)}^{z=h_{2}(r, \theta)} f(r, \theta, z) r d z d r d \theta \\
& \text { Volume of } \mathrm{E}=\iiint_{E} d V=\int_{\theta=\theta_{1}}^{\theta=\theta_{2}} \int_{r=g_{1}(\theta)}^{r=g_{2}(\theta)} \int_{z=h_{1}(r, \theta)}^{z=h_{2}(r, \theta)} r d z d r d \theta
\end{aligned}
$$

Example 10: Use cylindrical coordinates to evaluate $\iiint_{E}\left(x^{3}+x y^{2}\right) d V$, where $E$ is the solid in the first octant that lies beneath the paraboloid $z=1-x^{2}-y^{2}$.

## Solution:

Example 11: Use cylindrical coordinates to find the volume of the solid that lies both within the cylinder $x^{2}+y^{2}=4$ and the sphere $x^{2}+y^{2}+z^{2}=9$.

Solution: Using Maple, we can produce the following graph that represents this solid:


In this graph, the shaft of the solid is represented by the cylinder equation $x^{2}+y^{2}=4$. It is capped on the top and bottom by the sphere $x^{2}+y^{2}+z^{2}=9$. Solving for $z$, the upper and bottom portions of the sphere can be represented by the equations $z= \pm \sqrt{9-x^{2}-y^{2}}$. Thus, $z$ ranges from $z=-\sqrt{9-x^{2}-y^{2}}$ to $z=\sqrt{9-x^{2}-y^{2}}$. Since $x^{2}+y^{2}=r^{2}$ in cylindrical coordinates, these limits become $z=-\sqrt{9-r^{2}}$ to $z=\sqrt{9-r^{2}}$. When this surface is projected onto the $x-y$ plane, it is represented by the circle $x^{2}+y^{2}=4$. The graph is

(Continued on next page)

This is a circle of radius 2 . Thus, in cylindrical coordinates, this circle can be represented from $r=0$ to $r=2$ and from $\theta=0$ to $\theta=2 \pi$. Thus, the volume can be represented by the following integral:

$$
\text { Volume }=\iiint_{E} d V=\int_{\theta=\theta_{1}}^{\theta=\theta_{2}} \int_{r=g_{1}(\theta)}^{r=g_{2}(\theta)} \int_{z=h_{1}(r, \theta)}^{z=h_{2}(r, \theta)} r d z d r d \theta=\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=2} \int_{z=-\sqrt{9-r^{2}}}^{z=\sqrt{9-r^{2}}} r d z d r d \theta
$$

We evaluate this integral as follows:

$$
\begin{aligned}
\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=2} \int_{z=-\sqrt{9-r^{2}}}^{z=\sqrt{9-r^{2}}} r d z & d r d \theta=\left.\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=2} r z\right|_{z=-\sqrt{9-r^{2}}} ^{z=\sqrt{9-r^{2}}} d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=2} r\left(\sqrt{9-r^{2}}\right)-r\left(-\sqrt{9-r^{2}}\right) d r d \theta \\
& =\int_{\theta=0}^{r=2 \pi} \int_{r=0}^{r=2} 2 r \sqrt{9-r^{2}} d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi}-\left.\frac{2}{3}\left(9-r^{2}\right)^{\frac{3}{2}}\right|_{r=0} ^{r=2} d \theta \quad\left(\text { Use u - du sub let } u=9-r^{2}\right) \\
& =\int_{\theta=0}^{\theta=2 \pi}\left[-\frac{2}{3}\left(9-2^{2}\right)^{\frac{3}{2}}--\frac{2}{3}\left(9-0^{2}\right)^{\frac{3}{2}}\right] d \theta \\
& =\int_{\theta=0}^{\left[-\frac{2}{3}(5)^{\frac{3}{2}}+\frac{2}{3}(9)^{\frac{3}{2}}\right] d \theta} \\
& =\int_{\theta=2 \pi}^{\left[18-\frac{10}{3} \sqrt{5}\right] d \theta} \quad\left(\text { Note }(9)^{\frac{3}{2}}=27 \text { and }(5)^{\frac{3}{2}}=5 \sqrt{5}\right) \\
& =\left.\left[18-\frac{10}{3} \sqrt{5}\right] \theta\right|_{\theta=0} ^{\theta=2 \pi} \\
& =\left(18-\frac{10}{3} \sqrt{5}\right) 2 \pi-0 \\
= & 36 \pi-\frac{20 \pi}{3} \sqrt{5}
\end{aligned}
$$

Thus, the volume is $36 \pi-\frac{20 \pi}{3} \sqrt{5}$.

## Triple Integrals in Spherical Coordinates

Suppose we have a continuous function $f(\rho, \phi, \theta)$ defined on a bounded solid region $E$.


Then

$$
\begin{aligned}
& \iiint_{E} f(\rho, \phi, \theta) d V=\int_{\theta=\theta_{1}}^{\theta=\theta_{2}} \int_{\phi=\phi_{1}}^{\phi=\phi_{2}} \int_{\rho=h_{1}(\phi, \theta)}^{\rho=h_{2}(\phi, \theta)} f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta \\
& \text { Volume of } \mathrm{E}=\iiint_{E} d V=\int_{\theta=\theta_{1}}^{\theta=\theta_{2}} \int_{\phi=\phi_{1}}^{\phi=\phi_{2}} \int_{\rho=h_{1}(\phi, \theta)}^{\rho=h_{2}(\phi, \theta)} \rho^{2} \sin \phi d \rho d \phi d \theta
\end{aligned}
$$

Example 12: Use spherical coordinates to evaluate $\iiint_{E} e^{\sqrt{x^{2}+y^{2}+z^{2}}} d V$, where $E$ is enclosed by the sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant.

## Solution:

Example 13: Convert $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{16-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d \theta$ from rectangular to spherical coordinates and evaluate.

Solution: Using the identities $x=\rho \sin \phi \cos \theta$ and $y=\rho \sin \phi \sin \theta$, the integrand becomes

$$
\begin{aligned}
\sqrt{x^{2}+y^{2}} & =\sqrt{\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta} \\
& =\sqrt{\rho^{2} \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} \\
& =\sqrt{\rho^{2} \sin ^{2} \phi(1)}=\rho \sin \phi
\end{aligned}
$$

The limits with respect to $z$ range from $z=0$ to $z=\sqrt{16-x^{2}-y^{2}}$. Note that $z=\sqrt{16-x^{2}-y^{2}}$ is a hemisphere and is the upper half of the sphere $x^{2}+y^{2}+z^{2}=16$. The limits with respect to $y$ range from $y=0$ to $y=\sqrt{4-x^{2}}$, which is the semicircle located on the positive part of the $y$ axis on the $x-y$ plane of the circle $x^{2}+y^{2}=4$ as $x$ ranges from $x=-2$ to $x=2$. Hence, the region described by these limits is given by the following graph


Thus, we can see that $\rho$ ranges from $\rho=0$ to $\rho=4, \phi$ ranges from $\phi=0$ to $\phi=\frac{\pi}{2}$ and $\theta$ ranges from $\theta=0$ to $\theta=\pi$. Using these results, the integral can be evaluated in polar coordinates as follows:

$$
\begin{aligned}
& \int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{16-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d \theta \\
& =\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\frac{\pi}{2}} \int_{\rho=0}^{\rho=4} \rho \sin \phi\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta \\
& =\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\frac{\pi}{2}} \int_{\rho=0}^{\rho=4} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta \\
& =\left.\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\frac{\pi}{2}} \frac{\rho^{4}}{4} \sin ^{2} \phi\right|_{\rho=0} ^{\rho=4} d \phi d \theta \\
& =\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\frac{\pi}{2}}\left[\frac{4^{4}}{4} \sin ^{2} \phi-0\right] d \phi d \theta=\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\frac{\pi}{2}} 64 \sin ^{2} \phi d \phi d \theta \quad \text { (Sub in limits and simplify) } \\
& =\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\frac{\pi}{2}} 64\left[\frac{1-\cos 2 \phi}{2}\right] d \phi d \theta \quad \text { (Use trig identity } \sin ^{2} u=\frac{1-\cos 2 u}{2} \text { ) } \\
& =\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\frac{\pi}{2}} 32(1-\cos 2 \phi) d \phi d \theta=\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\frac{\pi}{2}}(32-32 \cos 2 \phi) d \phi d \theta \\
& \left.=\left.\int_{\theta=0}^{\theta=\pi}\left(32 \phi-32\left(\frac{1}{2}\right) \sin 2 \phi\right)\right|_{\phi=0} ^{\phi=\frac{\pi}{2}} \quad \text { (Integrate with respect to } \varphi \text {, use u - du sub for } \cos 2 \phi\right) \\
& =\left.\int_{\theta=0}^{\theta=\pi}(32 \phi-16 \sin 2 \phi)\right|_{\phi=0} ^{\phi=\frac{\pi}{2}} d \theta=\int_{\theta=0}^{\theta=\pi}\left[32\left(\frac{\pi}{2}\right)-16 \sin 2\left(\frac{\pi}{2}\right)\right]-(32(0)-16 \sin 0) d \theta \\
& =\int_{\theta=0}^{\theta=\pi}(16 \pi-16 \sin \pi-0) d \theta=\int_{\theta=0}^{\theta=\pi}(16 \pi-16(0)) d \theta \\
& =\int_{\theta=0}^{\theta=\pi} 16 \pi d \theta=\left.16 \pi \theta\right|_{\theta=0} ^{\theta=\pi} \quad \quad \text { (Integrate with respect to } \theta \text { ) } \\
& =16 \pi(\pi)-0=16 \pi^{2}
\end{aligned}
$$

