Section 11.1: Functions of Several Variables

Practice HW from Stewart Textbook (not to hand in)

$$
\text { p. } 746 \text { \# 5-21 odd }
$$

Functions of More Than One Variable

So far most of our experience has been working with functions of one variables.
Some examples are: $f(x)=x^{2}, g(x)=\ln x, h(x)=e^{x}$. In this section, we want to examine functions and variables of multivariate equations and functions, like
$z=f(x, y)=x^{2}+4 x y$ or $g(x, y, z)=\frac{x e^{y}}{z^{2}}$.

Example 1: Given $f(x, y)=x^{2}+4 x y$, find $f(-1,2)$.

Solution:

Example 2: Given $g(x, y, z)=\frac{x e^{y}}{z^{2}}$, find $g(-2,0,3)$.

Solution:

Function of Two Variables - Domain and Range

A function of two variables associates with each ordered pair (x, y) a unique (one and only one) number $z=f(x, y)$.

Informally, the domain of a function of two variables is the set of ordered pairs (x, y) where the function $f(x, y)$ is defined. The range is the set of z values output by $f(x, y)$.

Example 3: Describe the domain and range of $f(x, y)=\sqrt{4-x^{2}-4 y^{2}}$

Solution:

Graphing a Function of Two Variables

Graphically, a function of two variables gives a 3-D surface. It can be useful in some cases to recognize the quadric surface and cylinder graphs studied in Section 9.6 when graphing functions of two variables.

Example 4: Make a rough sketch of the surface $f(x, y)=\sqrt{4-x^{2}-4 y^{2}}$.
Solution:

Level Curves and Contour Maps

Level Curves gives a way of representing the behavior of a 3D surface using 2D curves in a projection like fashion. Formally, the level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant in the range of f.

All the level curves sketch together form a contour map for a function.
Example 5: Sketch a contour map of the function $f(x, y)=x^{2}+y^{2}$ and show the relationship to the 3D surface it represents.

Solution:

Note: A surface $z=f(x, y)$ is steep when the level curves are close together. It is somewhat flatter when they are further apart (see Figure 5 and 6 on p. 742).

Example 6: Use the following contour map to estimate $f(2,1)$ and $f(0,1)$.

Solution:

Example 7: Draw a contour map of the function $f(x, y)=x^{2}-y$

Solution:

Example 8: Draw a contour map of the function $f(x, y)=\sqrt{x^{2}-y^{2}}$

Solution:

