Chapter 1

History and Social Implications of Computing
Objectives

• In this chapter you will:
 – Learn why today almost everyone is a computer operator
 – Learn about the predecessors of modern computer hardware and software
 – Learn that sometimes good ideas flop and bad ones survive
 – Meet some interesting figures—some famous, some infamous, some wealthy, and some obscure
 – See the historical and social implications of computing
Why You Need to Know About…the History of Computing

• Fields altered by computer communication devices
 – Tool for artists, architects, and designers
 – Information archive
 – Entertainment device
 – Trains, planes, and automobiles

• Ubiquitous computer presence
 – Examine student’s relationship to the machine
 – Examine historical and biographical studies

• Look at the future
Ancient History

- Origins of computer in ancient Assyria
 - Tablets with arithmetic/trigonometric solutions
 - Math solves societal and personal problems
- Drivers of mathematical development
 - Property ownership and the need to measure
 - Vertical construction and the pyramids
 - Navigation and the need to control time
- Computers do math
Pascal and Leibniz Start the Wheel Rolling

• Paper, wood, stone, papyrus tables, and abacuses as “computers”
 – 1622: invention of slide rule
 – 1642: invention of mechanical calculator by Pascal
 – 1694: Leibniz Wheel expands arithmetic operations
Joseph Jacquard

• Invents programmable loom in 1801
 – Jacquard loom weaved patterns in fabric
 – Allowed input and storage of parameters
 – Selection pins oriented with punch cards
 – Similarities with player piano

• Concept of the stored program
Joseph Jacquard (cont’d.)

Figure 1-1, The Jacquard loom, using a string of punched cards that feed into the machine

Courtesy of IBM Archive
Charles Babbage

• Invents Difference Engine in 1823
 – Adds, subtracts, multiplies, and divides
• Designs Analytical Engine
 – Components of modern computer
 • Input and output devices
 • Memory and CPU
 – Not built due to lack of funds
• Collaborates with Ada Lovelace Byron
 – Attribution of program loop concept
 – Ada programming language namesake
Herman Hollerith

- Invents electromechanical counter in 1880s
 - Serves tabulation role in 1890 U.S. census
 - Machine uses punch cards as input
 - Single-purpose machine
- Company created around technology becomes IBM
 - IBM rolls out multipurpose Mark I in 1944
 - Mark I rapidly made obsolete by vacuum tubes
Herman Hollerith (cont’d.)

Figure 1-2, The Hollerith census counting machine

Courtesy of IBM Archive
Progression of Computer Electronics

• Charles Sanders Peirce extends work of Boole
 – Electric switches emulate true/false conditions of Boolean algebra
 – Benjamin Burack implements concepts in 1936 logic machine
• John Atanasoff and Clifford Berry build a computer using vacuum tubes
• World War II
 – Developmental turning point
Wartime Research Drives Technological Innovation

• Military need for trajectory tables
 – Weapons testing
 • U.S. Navy Board of Ordnance helps fund Mark I
 • U.S. Army funds ENIAC (Electronic Numerical Integrator and Computer)

• ENIAC runs 1000 times faster than Mark I
 – Both were too late for the war effort
ENIAC and EDVAC

• ENIAC’s overhead
 – Loud and large: 30 tons
 • 18,000 vacuum tubes needed constant attention
 • 6000 switches needed for arithmetic operations

• ENIAC’s strengths
 – Performs arithmetic and logic operations
 – Made multipurpose with symbolic variables

• ENIAC’S weaknesses
 – Could not modify program contents
 – Had to be programmed externally
ENIAC and EDVAC (cont’d.)

Figure 1-3, The ENIAC and some of its programmers
ENIAC and EDVAC (cont’d.)

• EDVAC (Electronic Discrete Variable Automatic Computer) created in 1944
 – Recognized as the Von Neumann machine
 – Superior model for descendant computers
 – Operation governed by program in memory
 – Programs could be modified
 – Stored program concept made programs reusable

• British response: Colossus
 – Helps crack German U-boat Enigma code
 – All machines destroyed by 1960s
ENIAC and EDVAC (cont’d.)

Figure 1-4, The Enigma machine was used to encode German military intelligence in World War II
The Computer Era Begins: The First Generation

- 1950s: First Generation for hardware and software
 - Vacuum tubes worked as memory for the machine
 - Data written to magnetic drums and magnetic tapes
 - Paper tape and data cards handled input
 - The line printer made its appearance

- Software separates from hardware and evolves
 - Instructions written in binary or machine code
 - Assembly language: first layer of abstraction
 - Programmers split into system and application engineers
UNIVAC

Figure 1-5, Grace Murray Hopper and the UNIVAC

Courtesy of IBM Archive
UNIVAC (cont’d.)

• UNIVAC
 – First commercially viable computer
 – U.S. Census Bureau is the first customer
 – Faces skepticism from Howard Aiken (Mark I builder)

• UNIVAC and the 1952 presidential election
 – Successfully predicts outcome during CBS broadcast
 – Quickly adopted by all major news network
IBM (Big Blue)

• IBM dominates mainframe market by the 1960s
 – Strong sales culture
 – Controlled 70% of the market
• IBM vision
 – Sharp focus on a few products
 – Leverage existing business relationships
 – Introduce scalable (and hence flexible) systems
 – Lease systems with 10- to 15-year life spans
IBM (Big Blue) (cont’d.)

Figure 1-6, IBM 360 mainframe computers were the size of refrigerators and required a full staff to manage them

Courtesy of IBM Archive
Transistors in the Second Generation

• Software innovations
 – Assembly language limitations
 – Appearance of high-level languages: FORTRAN, COBOL, LISP

• Hardware development
 – Transistor replaces vacuum tube
 – RAM becomes available with magnetic cores
 – Magnetic disks support secondary storage
Circuit Boards in the Third Generation

• Integrated circuits (IC) on chips
 – Miniaturized circuit components on board
 – Semiconductor properties
 – Reduce cost and size
 – Improve reliability and speed

• Operating systems (OS)
 – Program to manage jobs
 – Utilize system resources
 – Allow multiple users
Circuit Boards in the Third Generation (cont’d.)

Figure 1-7, A very short stack of IBM punched cards
Time-Sharing

• Allocates system resources to multiple users
 – Input with long paper rolls instead of punch cards
 – Productivity gains offset by increased response time
• General-purpose machines broaden appeal
• Programmers gear software toward end user
 – Distinctions between application level and OS level
 – Statistical and accounting programs hide implementation details
Living in the ’70s with the Fourth Generation

- Era of miniaturization
 - LSI chips contain up to 15,000 circuits
 - VLSI chips contain 100,000 to 1 million circuits
- Minicomputer industry grows
- UNIX operating system was created
 - Free to educational institutions
- Microcomputer makes appearance
The Personal Computer Revolution

• Causes:
 – Hardware vision of engineers
 – Software developers seeking challenges
 – Electronic hobbyists realizing a dream
 – All necessary hardware and software elements were at hand or being developed
 – Social, economic, and personal forces came together for support
Intel

• Intel 4004 chip
 – 4004 transistors onboard
 – Accrues greater functionality
 – Precursor to central processing unit (CPU)

• Gary Kildall
 – Writes OS for Intel microprocessor

• Software and hardware become separate commodities
The Altair 8800

- Development spurred by *Popular Electronics*
- Ed Roberts reports on the Altair 8800
 - Kit based on Intel 8080
 - Generates 4000 orders within three months
- Altair 8800 features
 - I/O similar to ENIAC’s
 - Open architecture provides adaptability
 - Portable
The Altair 8800 (cont’d.)

Figure 1-8, The MITS Altair 8800—assembled

Courtesy of Microsoft Archives
Enter Bill Gates, Paul Allen, and Microsoft

- Gates and Allen
 - Develop a BASIC interpreter
 - High-level language for microcomputer programmers
- Briefly associate with MITS
- Formed Micro-Soft company in 1975
 - By 1981, Microsoft was on its way to becoming a multibillion-dollar company
Enter Bill Gates, Paul Allen, and Microsoft (cont’d.)

Figure 1-9, Paul Allen and Bill Gates in 1981

Courtesy of Microsoft Archives
The Microcomputer Begins to Evolve

• Microcomputer’s profitability lures more players
 – Enter Radio Shack, IMSAI, Sphere, and others
• Altair’s bus becomes S100 industry standard
• MITS stumbles
 – Links prices of faulty hardware to BASIC
 – Develops new model incompatible with 8080
• 1977
 – MITS sold off
 – Hardware companies introduce competing models
An Apple a Day…

• 1976: Steve Jobs and Steve Wozniak offer Apple I
• 1977: Apple II developed and released
 – Based on Motorola 6502 processor
 – Gains respect in industry, as well as among hobbyists
 – Promotes application development
• VisiCalc spreadsheet program
 – Drives Apple II sales
 – Earns new title: killer app
 – Draws attention of wider business community
IBM Offers the PC

• IBM builds a microcomputer
 – Adopts the Intel 8088 off the shelf
 – Uses a nonproprietary CPU
 – Creates approachable documentation
 – Offers open architecture

• New product name: personal computer (PC)

• PC sold through retail outlets
MS-DOS

• IBM chooses Microsoft to develop OS
• Microsoft introduces MS-DOS
 – Based on Kildall’s 8-bit CP/M
 – Runs on 16-bit CPU (Intel 8088)
 – Prevails over competition
• IBM calls operating system PC-DOS
The Apple Macintosh Raises the Bar

- Steve Jobs visits Xerox PARC
 - Alto: graphics, menus, icons, windows, and mouse
 - Observes functioning Ethernet network
 - Learns about hypertext
- Jobs succeeds with Xerox ideas
 - Picks up where Xerox (focused on copiers) leaves off
 - Incorporates Palo Alto components in Macintosh
- 1984: Macintosh unveiled
 - Graphical user interface (GUI)
 - Mouse: point-and-click and ease-of-use
Other PCs (and One Serious OS Competitor) Begin to Emerge

- Microsoft two-fold argument to IBM
 - Adapt open architecture concept to OS
 - Allow Microsoft freedom to license its OS
- Microsoft answers Apple
 - Windows 3.1 incorporates Mac’s GUI features
 - Competing PC clones appear with Microsoft’s OS
- Microsoft leverages position
 - OS presence drives application software sales
 - Sales synergies and licensing give 90% of PC pie
The Latest Generation (Fifth)

• Parallel computing
 – Aka parallel architecture
 – CPUs joined for simultaneous task execution
• Three approaches
 – SIMD (single instruction, multiple data) stream
 – MIMD (multiple instruction, multiple data) stream
 – Internetworking
• Uses
 – Control Web pages, databases, and networks
 – Mathematical modeling and scientific research
The Internet

• ARPA origins of new communication system
 – Resource sharing
 – Common protocols
 – Fault tolerance

• 1969: ARPANET born
 – Consisted of four computers at four locations
 – Systems linked with Interface Message Processor

• ARPANET grows rapidly
 – Protocols allow easy entry into network
 – Electronic mail constitutes two-thirds of network traffic
LANs and WANs and other ANs

• The Internet as a network of networks
 – Wide area network (WAN)
 – Local area network (LAN)
 – Wireless local area network (WLAN)
 – Metropolitan area network (MAN)
 – Urban area network (UAN)

• Network technologies
 – Ethernet dominates
 – Wireless technologies
Super Software and the Web

- Object-oriented programming (OOP)
- Computer-aided software engineering (CASE)
- Origin of the World Wide Web (WWW)
 - 1990: Tim Berners-Lee develops hypertext
 - Microsoft and Internet Explorer
- Web components
 - Web pages
 - Browser
 - Network technology
Super Software and the Web (cont’d.)

Figure 1-10, Tim Berners-Lee, inventor of the World Wide Web
The Microsoft Era and More

• The “browser wars”
 – Microsoft integrates IE browser into Windows
 – Netscape opposes Microsoft: goes open source

• The wars continue in court
 – U.S. government files antitrust suit against Microsoft
 – By 2001, most of antitrust suit was dropped or lessened

• Linux OS threatens Windows: Low cost, open source, and reliability
What About the Future?

• Parallel computing
 – Massive amplification of computing power
 – Can be hosted by local networks as well as the Internet
• Wireless networking
 – Bluetooth
 – Embedded or ubiquitous computing
• Digitization of economy
• Privacy and security
• Open-source movement
One Last Thought

• Development as a product of needs and wants
• Mixture of forces driving innovation
 – Commercial and physical requirements (IC)
 – Need to solve a problem (Analytical Engine)
 – Desire to create something new (Apple I)
 – Goal of winning a war (World War II)
 – Need to succeed (Bill Gates)
• Evolutionary view
• Purpose of historical study
 – Avoid mistakes and emulate triumphs
Summary

• The evolution of computers
 – Tied to mathematical evolution and driven by the need to master time and space
• From stone tablets to electronic machines
 – Computer’s chief purpose: manipulate mathematical and linguistic symbols
• Civilizations from the times of the ancients to the present
 – Contributed to the development of computers and their science
Summary (cont’d.)

- Past leading to computer development included:
 - Mechanical calculators invented in the 17th century by Pascal and Leibniz
 - Jacquard loom of 1801 introduced the punch card and the concept of a stored program
 - Charles Babbage designed a prototype of the modern computer: the Analytical Engine
 - Herman Hollerith incorporated punch cards in his mechanical tabulating machines
Summary (cont’d.)

• World War II drove computer innovation in the mid-20th century: ENIAC, Mark I, Colossus
• EDVAC’s Von Neumann architecture
 – Basic model for all later development
• Progress from vacuum tubes to integrated circuits
 – Exponentially increased computer speed and simultaneously reduced the size and cost
• Microcomputer and Internet
 – Latter 20th-century development
 – Made computers ubiquitous