

Connecting with Computer Science, 2e

Chapter 1 History and Social Implications of Computing

Objectives

- In this chapter you will:
 - Learn why today almost everyone is a computer operator
 - Learn about the predecessors of modern computer hardware and software
 - Learn that sometimes good ideas flop and bad ones survive
 - Meet some interesting figures—some famous, some infamous, some wealthy, and some obscure
 - See the historical and social implications of computing

Why You Need to Know About...the History of Computing

- Fields altered by computer communication devices
 - Tool for artists, architects, and designers
 - Information archive
 - Entertainment device
 - Trains, planes, and automobiles
- Ubiquitous computer presence
 - Examine student's relationship to the machine
 - Examine historical and biographical studies
- Look at the future

Ancient History

- Origins of computer in ancient Assyria
 - Tablets with arithmetic/trigonometric solutions
 - Math solves societal and personal problems
- Drivers of mathematical development
 - Property ownership and the need to measure
 - Vertical construction and the pyramids
 - Navigation and the need to control time
- Computers do math

Pascal and Leibniz Start the Wheel Rolling

- Paper, wood, stone, papyrus tables, and abacuses as "computers"
 - 1622: invention of slide rule
 - 1642: invention of mechanical calculator by Pascal
 - 1694: Leibniz Wheel expands arithmetic operations

Joseph Jacquard

- Invents programmable loom in 1801
 - Jacquard loom weaved patterns in fabric
 - Allowed input and storage of parameters
 - Selection pins oriented with punch cards
 - Similarities with player piano
- Concept of the stored program

Joseph Jacquard (cont'd.)

Courtesy of IBM Archive

Figure 1-1, The Jacquard loom, using a string of punched cards that feed into the machine

Connecting with Computer Science, 2e

Charles Babbage

- Invents Difference Engine in 1823
 - Adds, subtracts, multiplies, and divides
- Designs Analytical Engine
 - Components of modern computer
 - Input and output devices
 - Memory and CPU
 - Not built due to lack of funds
- Collaborates with Ada Lovelace Byron
 - Attribution of program loop concept
 - Ada programming language namesake

Herman Hollerith

- Invents electromechanical counter in 1880s
 - Serves tabulation role in 1890 U.S. census
 - Machine uses punch cards as input
 - Single-purpose machine
- Company created around technology becomes IBM
 - IBM rolls out multipurpose Mark I in 1944
 - Mark I rapidly made obsolete by vacuum tubes

Herman Hollerith (cont'd.)

Courtesy of IBM Archive

Figure 1-2, The Hollerith census counting machine

Connecting with Computer Science, 2e

Progression of Computer Electronics

- Charles Sanders Peirce extends work of Boole
 - Electric switches emulate true/false conditions of Boolean algebra
 - Benjamin Burack implements concepts in 1936 logic machine
- John Atanasoff and Clifford Berry build a computer using vacuum tubes
- World War II
 - Developmental turning point

Wartime Research Drives Technological Innovation

- Military need for trajectory tables
 - Weapons testing
 - U.S. Navy Board of Ordnance helps fund Mark I
 - U.S. Army funds ENIAC (Electronic Numerical Integrator and Computer)
- ENIAC runs 1000 times faster than Mark I
 - Both were too late for the war effort

ENIAC and EDVAC

- ENIAC's overhead
 - Loud and large: 30 tons
 - 18,000 vacuum tubes needed constant attention
 - 6000 switches needed for arithmetic operations
- ENIAC's strengths
 - Performs arithmetic and logic operations
 - Made multipurpose with symbolic variables
- ENIAC'S weaknesses
 - Could not modify program contents
 - Had to be programmed externally

ENIAC and EDVAC (cont'd.)

Courtesy of IBM Archive

Figure 1-3, The ENIAC and some of its programmers

Connecting with Computer Science, 2e

ENIAC and EDVAC (cont'd.)

- EDVAC (Electronic Discrete Variable Automatic Computer) created in 1944
 - Recognized as the Von Neumann machine
 - Superior model for descendant computers
 - Operation governed by program in memory
 - Programs could be modified
 - Stored program concept made programs reusable
- British response: Colossus
 - Helps crack German U-boat Enigma code
 - All machines destroyed by 1960s

ENIAC and EDVAC (cont'd.)

Courtesy of NSA

Figure 1-4, The Enigma machine was used to encode German military intelligence in World War II

Connecting with Computer Science, 2e

The Computer Era Begins: The First Generation

- 1950s: First Generation for hardware and software
 - Vacuum tubes worked as memory for the machine
 - Data written to magnetic drums and magnetic tapes
 - Paper tape and data cards handled input
 - The line printer made its appearance
- Software separates from hardware and evolves
 - Instructions written in binary or machine code
 - Assembly language: first layer of abstraction
 - Programmers split into system and application engineers

UNIVAC

Courtesy of IBM Archive

Figure 1-5, Grace Murray Hopper and the UNIVAC

Connecting with Computer Science, 2e

UNIVAC (cont'd.)

- UNIVAC
 - First commercially viable computer
 - U.S. Census Bureau is the first customer
 - Faces skepticism from Howard Aiken (Mark I builder)
- UNIVAC and the 1952 presidential election
 - Successfully predicts outcome during CBS broadcast
 - Quickly adopted by all major news network

IBM (Big Blue)

- IBM dominates mainframe market by the 1960s
 - Strong sales culture
 - Controlled 70% of the market
- IBM vision
 - Sharp focus on a few products
 - Leverage existing business relationships
 - Introduce scalable (and hence flexible) systems
 - Lease systems with 10- to 15-year life spans

IBM (Big Blue) (cont'd.)

Courtesy of IBM Archive

Figure 1-6, IBM 360 mainframe computers were the size of refrigerators and required a full staff to manage them

Connecting with Computer Science, 2e

Transistors in the Second Generation

- Software innovations
 - Assembly language limitations
 - Appearance of high-level languages: FORTRAN, COBOL, LISP
- Hardware development
 - Transistor replaces vacuum tube
 - RAM becomes available with magnetic cores
 - Magnetic disks support secondary storage

Circuit Boards in the Third Generation

- Integrated circuits (IC) on chips
 - Miniaturized circuit components on board
 - Semiconductor properties
 - Reduce cost and size
 - Improve reliability and speed
- Operating systems (OS)
 - Program to manage jobs
 - Utilize system resources
 - Allow multiple users

Circuit Boards in the Third Generation (cont'd.)

Figure 1-7, A very short stack of IBM punched cards

Time-Sharing

- Allocates system resources to multiple users
 - Input with long paper rolls instead of punch cards
 - Productivity gains offset by increased response time
- General-purpose machines broaden appeal
- Programmers gear software toward end user
 - Distinctions between application level and OS level
 - Statistical and accounting programs hide implementation details

Living in the '70s with the Fourth Generation

- Era of miniaturization
 - LSI chips contain up to 15,000 circuits
 - VLSI chips contain 100,000 to 1 million circuits
- Minicomputer industry grows
- UNIX operating system was created
 - Free to educational institutions
- Microcomputer makes appearance

The Personal Computer Revolution

• Causes:

- Hardware vision of engineers
- Software developers seeking challenges
- Electronic hobbyists realizing a dream
- All necessary hardware and software elements were at hand or being developed
- Social, economic, and personal forces came together for support

Intel

- Intel 4004 chip
 - 4004 transistors onboard
 - Accrues greater functionality
 - Precursor to central processing unit (CPU)
- Gary Kildall
 - Writes OS for Intel microprocessor
- Software and hardware become separate commodities

The Altair 8800

- Development spurred by *Popular Electronics*
- Ed Roberts reports on the Altair 8800
 - Kit based on Intel 8080
 - Generates 4000 orders within three months
- Altair 8800 features
 - I/O similar to ENIAC's
 - Open architecture provides adaptability
 - Portable

The Altair 8800 (cont'd.)

Courtesy of Microsoft Archives

Figure 1-8, The MITS Altair 8800—assembled

Enter Bill Gates, Paul Allen, and Microsoft

- Gates and Allen
 - Develop a BASIC interpreter
 - High-level language for microcomputer programmers
- Briefly associate with MITS
- Formed Micro-Soft company in 1975
 - By 1981, Microsoft was on its way to becoming a multibillion-dollar company

Enter Bill Gates, Paul Allen, and Microsoft (cont'd.)

Courtesy of Microsoft Archives

Figure 1-9, Paul Allen and Bill Gates in 1981

Connecting with Computer Science, 2e

The Microcomputer Begins to Evolve

- Microcomputer's profitability lures more players
 Enter Radio Shack, IMSAI, Sphere, and others
- Altair's bus becomes S100 industry standard
- MITS stumbles
 - Links prices of faulty hardware to BASIC
 - Develops new model incompatible with 8080
- 1977
 - MITS sold off
 - Hardware companies introduce competing models

An Apple a Day...

- 1976: Steve Jobs and Steve Wozniak offer Apple I
- 1977: Apple II developed and released
 - Based on Motorola 6502 processor
 - Gains respect in industry, as well as among hobbyists
 - Promotes application development
- VisiCalc spreadsheet program
 - Drives Apple II sales
 - Earns new title: killer app
 - Draws attention of wider business community

IBM Offers the PC

- IBM builds a microcomputer
 - Adopts the Intel 8088 off the shelf
 - Uses a nonproprietary CPU
 - Creates approachable documentation
 - Offers open architecture
- New product name: personal computer (PC)
- PC sold through retail outlets

MS-DOS

- IBM chooses Microsoft to develop OS
- Microsoft introduces MS-DOS
 - Based on Kildall's 8-bit CP/M
 - Runs on 16-bit CPU (Intel 8088)
 - Prevails over competition
- IBM calls operating system PC-DOS

The Apple Macintosh Raises the Bar

- Steve Jobs visits Xerox PARC
 - Alto: graphics, menus, icons, windows, and mouse
 - Observes functioning Ethernet network
 - Learns about hypertext
- Jobs succeeds with Xerox ideas
 - Picks up where Xerox (focused on copiers) leaves off
 - Incorporates Palo Alto components in Macintosh
- 1984: Macintosh unveiled
 - Graphical user interface (GUI)
 - Mouse: point-and-click and ease-of-use

Other PCs (and One Serious OS Competitor) Begin to Emerge

- Microsoft two-fold argument to IBM
 - Adapt open architecture concept to OS
 - Allow Microsoft freedom to license its OS
- Microsoft answers Apple
 - Windows 3.1 incorporates Mac's GUI features
 - Competing PC clones appear with Microsoft's OS
- Microsoft leverages position
 - OS presence drives application software sales
 - Sales synergies and licensing give 90% of PC pie

The Latest Generation (Fifth)

- Parallel computing
 - Aka parallel architecture
 - CPUs joined for simultaneous task execution
- Three approaches
 - SIMD (single instruction, multiple data) stream
 - MIMD (multiple instruction, multiple data) stream
 - Internetworking
- Uses
 - Control Web pages, databases, and networks
 - Mathematical modeling and scientific research

The Internet

- ARPA origins of new communication system
 - Resource sharing
 - Common protocols
 - Fault tolerance
- 1969: ARPANET born
 - Consisted of four computers at four locations
 - Systems linked with Interface Message Processor
- ARPANET grows rapidly
 - Protocols allow easy entry into network
 - Electronic mail constitutes two-thirds of network traffic

LANs and WANs and other ANs

- The Internet as a network of networks
 - Wide area network (WAN)
 - Local area network (LAN)
 - Wireless local area network (WLAN)
 - Metropolitan area network (MAN)
 - Urban area network (UAN)
- Network technologies
 - Ethernet dominates
 - Wireless technologies

Super Software and the Web

- Object-oriented programming (OOP)
- Computer-aided software engineering (CASE)
- Origin of the World Wide Web (WWW)
 - 1990: Tim Berners-Lee develops hypertext
 - Microsoft and Internet Explorer
- Web components
 - Web pages
 - Browser
 - Network technology

Super Software and the Web (cont'd.)

Donna Coveny/Courtesy of the World Wide Web Consortium (W3C)

Figure 1-10, Tim Berners-Lee, inventor of the World Wide Web

The Microsoft Era and More

- The "browser wars"
 - Microsoft integrates IE browser into Windows
 - Netscape opposes Microsoft: goes open source
- The wars continue in court
 - U.S. government files antitrust suit against Microsoft
 - By 2001, most of antitrust suit was dropped or lessened
- Linux OS threatens Windows: Low cost, open source, and reliability

What About the Future?

- Parallel computing
 - Massive amplification of computing power
 - Can be hosted by local networks as well as the Internet
- Wireless networking
 - Bluetooth
 - Embedded or ubiquitous computing
- Digitization of economy
- Privacy and security
- Open-source movement

One Last Thought

- Development as a product of needs and wants
- Mixture of forces driving innovation
 - Commercial and physical requirements (IC)
 - Need to solve a problem (Analytical Engine)
 - Desire to create something new (Apple I)
 - Goal of winning a war (World War II)
 - Need to succeed (Bill Gates)
- Evolutionary view
- Purpose of historical study
 - Avoid mistakes and emulate triumphs

Summary

- The evolution of computers
 - Tied to mathematical evolution and driven by the need to master time and space
- From stone tablets to electronic machines
 - Computer's chief purpose: manipulate mathematical and linguistic symbols
- Civilizations from the times of the ancients to the present
 - Contributed to the development of computers and their science

Summary (cont'd.)

- Past leading to computer development included:
 - Mechanical calculators invented in the 17th century by Pascal and Leibniz
 - Jacquard loom of 1801 introduced the punch card and the concept of a stored program
 - Charles Babbage designed a prototype of the modern computer: the Analytical Engine
 - Herman Hollerith incorporated punch cards in his mechanical tabulating machines

Summary (cont'd.)

- World War II drove computer innovation in the mid-20th century: ENIAC, Mark I, Colossus
- EDVAC's Von Neumann architecture
 - Basic model for all later development
- Progress from vacuum tubes to integrated circuits
 - Exponentially increased computer speed and simultaneously reduced the size and cost
- Microcomputer and Internet
 - Latter 20th-century development
 - Made computers ubiquitous