
Welcome to DrRacket, version 5.3.6 [3m].
Language: racket; memory limit: 1024 MB.
A C program, and how information is placed on the run-time stack at three moments
in time.

The purpose is to help understand how the run-time stack holds the current
function's local variables (incl. its parameters), as well as one piece of
important book-keeping: what program-instruction to resume at, when the current
helper function finishes.

This is important, since it explains how an attacker, if they can get a stack
overflow to both (a) place malicious code onto the stack, *and* (b) overwrite the
return-instruction-pointer so that the program 'returns' to that malicious code
rather than the real return-site, then the attacker has achieved "running of
arbitrary code".

Notes:
- "%rip" is a local system variable for "return instruction pointer" -- where to
resume the program at,
 when finishing the current helper function.
- "%rsp" is a local system variable for "return stack pointer" -- where to adjust
the top-of-stack to,
 when finishing the current helper function.

"The sample C program:"
#include <stdio.h>

int main() {
 printf("This program verifies whether 5 to the 300th power is bigger than 0.\n");
 int x = 5;
 int y = 300;
 char report[5] = "Yes!";

 if (power(x,y) >= 0) {
 printf("%s\n",report);
 }
 else {
 printf("It's not! Hmmm; overflow?\n");
 }
 return 1; // indicate an error, to the shell / caller.
}

// Return a^b.
//
int power(int a, int b) {
 int product = 1;

 while (b!=0) {
 product = multiply(product, a);
 b--;
 }
 return product;
}

// Return x*y.
//
int multiply (int x, int y) {
 return x*y;
}
"In main:"

"calling power from main:"

"calling multiply from power from main:"

>

