Section 3.5

Optimization (Business Applications)

Maximize Profit

Minimize Cost
Maximizing Revenue

Example 1

Find the number of units x that produces a maximum profit.

$$R = 48x^2 - 0.02x^3$$
$$R' = 96x - 0.06x^2$$
$$96x - 0.06x^2 = 0$$
$$x(96 - .06x) = 0$$
$$x = 0 \text{ or } 96 - .06x = 0$$
$$-.06x = -96$$
$$x = 1600$$

Thus, 1600 units will produce a maximum profit.

Example 2

Let $R = 400 - x^2$ represent the revenue earned by a local outfitter company that sells backpacks where x is the number of backpacks sold in a month.

$$R = 400x - x^2$$
$$R' = 400 - 2x$$

$$400 - 2x = 0$$
$$400 - 2x + 2x = 0 + 2x$$
$$400 = 2x$$
$$\frac{400}{2} = \frac{2x}{2}$$
$$x = 200$$

Thus, selling 200 backpacks in one month would produce a maximum profit.
Example 3

Given the demand function and cost function below, find the revenue function and then find the value of x that produces the maximum profit. Hint: $R(x) = xp$

Demand Function: $p = 6000 - 0.4x^2$
Cost Function: $C = 2400x + 5200$

Solution: First find the revenue function using $R(x) = xp$, then find the profit function by subtracting the cost function from the revenue function. Once you have the profit function, you simply take the derivative of the profit function and set the result equal to zero.

Demand Function
$p = 6000 - 0.4x^2$
$C = 2400x + 5200$
$R(x) = xp = x(6000 - .4x^2)$
$R(x) = 6000x - .4x^3$
$P(x) = R(x) - C(x)$
$P(x) = 6000x - x^3 - (2400x + 5200)$
$P(x) = 6000x + .4x^3 - 2400x - 5200$
$P(x) = .4x^3 + 3600x - 5200$
$P'(x) = .12x^2 + 3600$
$.12x^2 + 3600 = 0$
$.12x^2 = 3600$
$.12 = \frac{3600}{.12}$
$x^2 = 3000$
$x = \sqrt{3000}$
$x = 54.8$
$p = 6000 - 54.8^2 = 6000 - 3000 = 3000$
Example 4

Given the demand function and cost function below, find the revenue function and then find the value of \(x \) that produces the maximum profit.

Demand Function

\[
p = 50 - .1\sqrt{x} = 50 - .1x^{\frac{1}{2}}
\]

\[
C = 35x + 500
\]

\[
R(x) = xp = x(50 - .1x^{\frac{1}{2}})
\]

\[
R(x) = 50x - .1x^{\frac{3}{2}}
\]

\[
P(x) = R(x) - C(x)
\]

\[
P(x) = 50x - .1x^{\frac{3}{2}} - (35x + 500)
\]

\[
P(x) = 50x + .1x^{\frac{3}{2}} - 35x - 500
\]

\[
P(x) = -.1x^{\frac{3}{2}} + 15x - 500
\]

\[
P'(x) = -.15x^{\frac{1}{2}} + 15
\]

\[
-.15\sqrt{x} + 15 = 0
\]

\[
-.15\sqrt{x} = -15
\]

\[
\frac{-15}{-.15} = \frac{15}{.15}
\]

\[
\sqrt{x} = 100
\]

\[
x = 10000
\]
Example 6

Suppose that you have 320 square centimeters of aluminum to make a cylinder shaped coke can. Find the radius of the can that would produce a maximum volume.

First find formula for the volume of the coke can.

Surface area of cylinder: \(S = 2\pi r + 2\pi rh \)

Volume of a cylinder: \(V = \pi r^2 h \)

First, take the surface area formula and solve for \(h \)

\[
S = 2\pi r + 2\pi rh \\
320 = 2\pi r + 2\pi rh \\
320 - 2\pi r = 2\pi rh \\
\Rightarrow h = \frac{320 - 2\pi r}{2\pi r}
\]

Next, substitute \(\frac{320 - 2\pi r}{2\pi r} \) in for \(h \) in the volume formula.

\[
V = \pi r^2 h \\
V = \pi r^2 \left(\frac{320 - 2\pi r}{2\pi r} \right) \\
V = \frac{320\pi r - 2\pi r^3}{2\pi r} \\
V = 160r - \pi r^3
\]

Now, take the derivative of the volume and set the result equal to zero

\[
V' = 160 - 3\pi r^2
\]

\[
0 = 160 - 3\pi r^2 \\
3\pi r^2 = 160 \\
r^2 = \frac{160}{3\pi} \\
r^2 = 16.98 \Rightarrow r = \sqrt{16.98} \Rightarrow r = \pm 4.1 \text{ cm}
\]

Eliminating the negative answer we get the radius of the can is 4.1 cm.
Now find the height use the radius is 4.1 cm

\[h = \frac{320 - 2\pi r}{2\pi} = \frac{320 - 2(3.14)(4.1)}{2(3.14)(4.1)} = \frac{294.252}{25.748} = 11.4 \text{ cm} \]

The graph of \(V = 160r - \pi r^3 \)