1. Suppose that
\[S = [0, 1) \cup (1, 2). \]

a. What is the set of interior points of \(S \)?
The set of interior points of \(S \) is \((0, 1) \cup (1, 2). \)

b. Given that \(U \) is the set of interior points of \(S \), evaluate \(U \).
\[(0, 1) \cup (1, 2) = [0, 1] \cup [1, 2] = \mathbb{R}. \]
The purpose of parts a and b is to exhibit a set \(S \) such that, if \(U \) is the set of interior points of \(S \) then \(U = \mathbb{R} \).

c. Give an example of a set \(S \) of real numbers such that if \(U \) is the set of interior points of \(S \) then \(U \neq [0, 1] \).

We could take \(S \) to be a singleton like \(\{3\} \) or it could be the set of all integers. It could also be the set of all rational numbers between 0 and 1.

d. Give an example of a subset \(S \) of the interval \([0, 1] \) such that \(S = [0, 1] \) but if \(U \) is the set of interior points of \(S \) then \(U \neq [0, 1] \).

Once again, take the set of all rational numbers between 0 and 1.

2. Given that
\[S = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^+ \right\}, \]
evaluate \(S \).

Hint: Show that
\[S = \{0\} \cup \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^+ \right\}. \]

First show that \(0 \in S \). Then observe that every negative number belongs to the set \((-\infty, 0)\) and that if \(x \) is any positive number then \(x \) belongs to the interval
\[\left(\frac{1}{n+1}, \frac{1}{n} \right) \]
for some positive integer \(n \).

3. Given that \(S \) is a set of real numbers, that \(H \) is a closed set and that \(S \subseteq H \), prove that \(\overline{S} \subseteq \overline{H} \).

We could argue that \(\overline{S} \subseteq \overline{H} \) and that, because \(H \) is closed, \(\overline{H} = H \).

4. Given two sets \(A \) and \(B \) of real numbers, prove that
\[\overline{A} \cup \overline{B} = \overline{A \cup B}. \]

Solution: Since \(A \subseteq \overline{A} \) and \(B \subseteq \overline{B} \) we have
\[A \cup B \subseteq \overline{A} \cup \overline{B}. \]

and therefore, since the union of the two closed sets \(\overline{A} \) and \(\overline{B} \) is closed we have
\[\overline{A} \cup \overline{B} \subseteq \overline{A} \cup \overline{B}. \]

On the other hand, since \(A \) is included in the closed set \(\overline{A} \cup \overline{B} \) we have
\[\overline{A} \subseteq \overline{A} \cup \overline{B}. \]

and, similarly we can see that
\[\overline{B} \subseteq \overline{A} \cup \overline{B}. \]

and so
\[\overline{A} \cup \overline{B} \subseteq \overline{A} \cup \overline{B}. \]

Therefore
\[\overline{A} \cup \overline{B} = \overline{A \cup B}. \]

5. Given two sets \(A \) and \(B \) of real numbers, prove that
\[\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A} \cap \mathcal{B}. \]

Do the two sides of this inclusion have to be equal? What if \(\mathcal{A} \) and \(\mathcal{B} \) are open? What if they are closed?

Since \(\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A} \) we have \(\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A} \) and similarly that \(\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{B} \). Thus
\[\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A} \cap \mathcal{B}. \]

Now observe that if \(A = (0, 1) \) and \(B = (1, 2) \) then
\[\mathcal{A} \cap \mathcal{B} = [0, 1] \cap [1, 2] = \{1\} \]
and
\[\mathcal{A} \cap \mathcal{B} = \emptyset = \emptyset. \]

Of course, we could give more spectacular examples like \(\mathcal{A} = Q \) and \(\mathcal{B} = R \setminus Q \).

6. Prove that if \(S \) is any set of real numbers then the set \(R \setminus S \) is the set of interior points of the set \(R \setminus S \).

Most students should be encouraged to write two separate arguments here. The first task is to show that every member of the set \(R \setminus S \) must be an interior point of \(R \setminus S \). Then one should show that every interior point of \(R \setminus S \) must belong to \(R \setminus S \).

On the other hand, a strong student could be permitted to observe that if \(x \) is any given number then the statement that \(x \) does not belong to \(\overline{S} \) is the statement that there exists a number \(\delta > 0 \) such that \((x - \delta, x + \delta) \cap S = \emptyset \), and that the latter equation is just the condition that \((x - \delta, x + \delta) \subseteq R \setminus S \).

7. Given that \(a \) is an upper bound of a given set \(S \) of real numbers, prove that the following two conditions are equivalent:
 a. We have \(a = \sup S \).
 b. We have \(a \in \overline{S} \).

To prove that condition a implies condition b we assume that \(a = \sup S \). We need to show that \(a \in \overline{S} \).

Suppose that \(\delta > 0 \). Using the fact that \(a \) is the least upper bound of \(S \) and that \(a - \delta < a \) we choose a member \(x \) of \(S \) such that \(a - \delta < x \). Since \(x \in (a - \delta, a + \delta) \cap S \) we have \((a - \delta, a + \delta) \cap S \neq \emptyset \).

To prove that condition b implies condition a we assume that \(a \in \overline{S} \). We need to show that \(a \) is the least upper bound of \(S \). Suppose that \(p < a \). Since the set \((p, \infty) \) is a neighborhood of \(a \) we have \((p, \infty) \cap S \neq \emptyset \).

Thus, since \(a \) is an upper bound of \(S \) and since no number \(p < a \) can be an upper bound of \(S \) we conclude that \(a \) is the least upper bound of \(S \).

8. Is it true that if \(A \) and \(B \) are sets of real numbers and

\[\mathcal{A} = \mathcal{B} = \mathbb{R} \]

then \(\mathcal{A} \cap \mathcal{B} = \mathbb{R} \)?

The answer is no. Look at \(A = Q \) and \(B = R \setminus Q \).

9. Prove that if \(A \) and \(B \) are open sets and

\[\mathcal{A} = \mathcal{B} = \mathbb{R} \]

then \(\mathcal{A} \cap \mathcal{B} = \mathbb{R} \). What if only one of the sets \(A \) and \(B \) is open?

Solution: All we need to know is that at least one of the sets \(A \) and \(B \) is open. Suppose that \(A \) and \(B \) are sets of real numbers, that
\[\mathcal{A} = \mathcal{B} = \mathbb{R} \]
and that the set \(A \) is open.

To prove that
\[\mathcal{A} \cap \mathcal{B} = \mathbb{R}, \]
suppose that \(x \) is any real number and that \(\delta > 0 \). Since \(x \in \mathcal{A} \) we know that the set
\[(x - \delta, x + \delta) \cap A \]
is nonempty and we also know that this set is open. Therefore, since \(\mathcal{B} = \mathbb{R} \) we know that
\[(x - \delta, x + \delta) \cap A \cap B \neq \emptyset. \]

We have therefore shown that every real number must belong to \(\mathcal{A} \cap \mathcal{B} \).
10. Two sets A and B are said to be separated from each other if
\[\overline{A} \cap B = A \cap \overline{B} = \emptyset. \]
Which of the following pairs of sets are separated from each other?

- a. $[0,1]$ and $[2,3]$. Yes.
- b. $(0,1)$ and $(1,2)$. Yes.
- c. $(0,1)$ and $(1,2)$. No because $(0,1) \cap (1,2) = \{1\} \neq \emptyset$.
- d. Q and $R \setminus Q$. No.

11. Prove that if A and B are closed and disjoint from one another then A and B are separated from each other. Suppose that A and B are closed and disjoint from one another. Since $A = \overline{A}$ and $B = \overline{B}$, the fact that $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ follows at once from the fact that $A \cap B = \emptyset$.

12. Prove that if A and B are open and disjoint from one another then A and B are separated from each other. Suppose that A and B are open and disjoint from one another. Given any number $x \in A$, we deduce from the fact that A is a neighborhood of x and $A \cap B = \emptyset$ that x is not close to B. Therefore $A \cap \overline{B} = \emptyset$ and we see similarly that $\overline{A} \cap B = \emptyset$.

13. Suppose that S is a set of real numbers. Prove that the two sets S and $R \setminus S$ will be separated from each other if and only if the set S is both open and closed. What then do we know about the sets S for which S and $R \setminus S$ are separated from each other?

Suppose that S and $R \setminus S$ are separated from each other. To show that S is open, suppose that $x \in S$. Since $S \cap (R \setminus S) = \emptyset$ we know that x is not close to $R \setminus S$. Choose $\delta > 0$ such that
\[(x-\delta,x+\delta) \cap (R \setminus S) = \emptyset \]
and observe that $(x-\delta,x+\delta) \subseteq S$. Thus S is open and a similar argument shows that $R \setminus S$ is also open. We therefore know that if the sets S and $R \setminus S$ are separated from one another then S is both open and closed.

Now suppose that S is both open and closed. Since the two set S and $R \setminus S$ are closed and disjoint from one other they are separated from one another.

14. This exercise refers to the notion of a subgroup of R that was introduced in an earlier exercise. That exercise should be completed before you start this one.

- a. Given that H and K are subgroups of R, prove that the set $H + K$ defined in the sense of an earlier exercise is also a subgroup of R.
 To prove that $H + K$ is a subgroup of R we need to show that $H + K$ is nonempty and that the sum and difference of any members of $H + K$ must always belong to $H + K$.
 To show that $H + K$ is nonempty we use the fact that H and K are nonempty to choose $x \in H$ and $y \in K$. Since $x + y \in H + K$ we have $H + K \neq \emptyset$.
 Now suppose that w_1 and w_2 are any members of the set $H + K$. Choose members x_1 and x_2 of H and members y_1 and y_2 of K such that $w_1 = x_1 + y_1$ and $w_2 = x_2 + y_2$. Since the numbers $x_1 + x_1$ and $x_1 - x_2$ belong to H and the numbers $y_1 + y_2$ and $y_1 - y_2$ belong to K, and since
 \[w_1 + w_2 = (x_1 + x_2) + (y_1 + y_2) \]
 and
 \[w_1 - w_2 = (x_1 - x_2) + (y_1 - y_2) \]
 we see at once that $w_1 + w_2$ and $w_1 - w_2$ belong to $H + K$.

- b. Prove that if a, b and c are integers and if
 \[a\sqrt{2} = b\sqrt{3} + c \]
 then $a = b = c = 0$.
 Solution: From the equation
 \[a\sqrt{2} = b\sqrt{3} + c \]
 we see that
\[2a^2 = 3b^2 + 2bc\sqrt{3} + c^2.\]

Therefore, unless \(bc = 0\) we have
\[\sqrt{3} = \frac{2a^2 - 3b^2 - c^2}{2bc},\]
which contradicts the fact that the number \(\sqrt{3}\) is irrational. Therefore at least one of the number \(b\) and \(c\) must be zero.

In the event that \(c = 0\), the equation
\[a\sqrt{2} = b\sqrt{3} + c\]
becomes
\[a\sqrt{2} = b\sqrt{3}\]
and, unless \(a = 0\), the latter equation gives us
\[\frac{\sqrt{2}}{\sqrt{3}} = \frac{b}{a}\]
which contradicts the fact that \(\sqrt{2}/\sqrt{3}\) is irrational. So in the case \(c = 0\) we also have \(a = 0\) and we see at once that \(b = 0\) as well.

In the event that \(b = 0\), the equation
\[a\sqrt{2} = b\sqrt{3} + c\]
becomes
\[a\sqrt{2} = c\]
and, unless \(a = 0\), the latter equation gives us
\[\sqrt{2} = \frac{c}{a}\]
which contradicts the irrationality of \(\sqrt{2}\). So, once again, \(a = 0\) and we see at once that \(c = 0\) as well.

c. Prove that if \(m, n, p\) and \(q\) are integers then it is impossible to have
\[\frac{\sqrt{2} - m}{n} = \frac{\sqrt{3} - p}{q}\]
and deduce that if \(\alpha\) is any real number and if \(H = \langle n\alpha \mid n \in \mathbb{Z} \rangle\) then the subgroup \(H + \mathbb{Z}\) cannot contain both of the numbers \(\sqrt{2}\) and \(\sqrt{3}\).

Solution: The equation
\[\frac{\sqrt{2} - m}{n} = \frac{\sqrt{3} - p}{q}\]
implies that
\[q\sqrt{2} = n\sqrt{3} - np + mq\]
which, by part b, tells us that
\[0 = q = n = mq - np\]
which is clearly impossible since \(n\) and \(q\) appear denominators of the fractions in the equation
\[\frac{\sqrt{2} - m}{n} = \frac{\sqrt{3} - p}{q}\]

Now, to obtain a contradiction, suppose that the subgroup \(H + \mathbb{Z}\) contains both of the numbers \(\sqrt{2}\) and \(\sqrt{3}\). Choose integers \(m\) and \(n\) such that
\[\sqrt{2} = m + na\]
and choose integers \(p\) and \(q\) such that
\[\sqrt{3} = p + qa.\]

Since \(\sqrt{2}\) is irrational, we know that \(\sqrt{2} \neq m\) and so \(n \neq 0\); and we know similarly that \(q \neq 0\). Thus
\[\frac{\sqrt{2} - m}{n} = \frac{\sqrt{3} - p}{q}\]
which we know to be impossible.

d. Suppose that G is a subgroup of R other than $\langle 0 \rangle$, that

$$p = \inf \{x \in G \mid x > 0\}$$

and that the number p is positive. Prove that the set G is closed.
Solution: We know from an earlier exercise that

$$G = \langle np \mid n \in \mathbb{Z} \rangle.$$

e. Prove that if G is a subgroup of R other than $\langle 0 \rangle$ and that G has no least positive member then $\overline{G} = R$.
Solution: This fact was established in an earlier exercise.

f. Suppose that α is an irrational number, that

$$H = \langle n\alpha \mid n \in \mathbb{Z} \rangle$$

and that $G = H + Z$ (in the sense of this exercise). Prove that although the sets H and Z are closed subgroups of R and although the set G is also a subgroup of R, the set G is not closed.
Solution: Since G cannot contain both of the numbers $\sqrt{2}$ and $\sqrt{3}$ we know that $G \neq R$. To show that G is not closed we shall make the observation that $\overline{G} = R$ and, for this purpose, all we have to show is that if

$$p = \inf \{x \in G \mid x > 0\}$$

then $p = 0$. Suppose that p is defined in this way and, to obtain a contradiction, suppose that $p > 0$. We know that

$$G = \langle np \mid n \in \mathbb{Z} \rangle$$

and, using the fact that both of the numbers 1 and α belong to G, we choose integers m and n such that

$$1 = mp$$

and

$$\alpha = np.$$

From the fact that $p = 1/m$ we see that p is rational but from the fact that $p = a/n$ we see that p must be irrational. Thus we have arrived at the promised contradiction.