{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Headi ng 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 1 0 1 0 2 2 0 1 }{PSTYLE "Title" -1 18 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 1 2 2 2 1 1 1 1 }3 1 0 0 12 12 1 0 1 0 2 2 19 1 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 10 "Chain Rule" }}{PARA 3 "" 0 "" {TEXT -1 14 "THE CHAIN RULE" }}{PARA 0 "" 0 "" {TEXT -1 53 "EXAMP LE: Use Maple V to illustrate the chain rule in" }}{PARA 0 "" 0 "" {TEXT -1 48 " differentiating sqrt(x^2+5)." }} {PARA 0 "" 0 "" {TEXT -1 71 "SOLUTION: Here we define f(z)= sqrt(z) , and g(x)=x^2+5, so that " }}{PARA 0 "" 0 "" {TEXT -1 43 " \+ f(g(x)) = sqrt(x^2+5)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "f := x->sqrt(x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "g := x -> x^2+5;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "(f@g)(x);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 67 "By the chain rule the derivative can be evaluated as the \+ product of" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 9 " D(f)(z);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 17 "with z=g(x) and" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "D(g)(x);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 24 "which can be computed by" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "D(f)(g(x))*D(g)(x);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 67 "Of course Maple V permits the direct calculation of the derivative." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "diff(sqrt(x^2+5),x);" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 28 "EXAMPLE: page 251, number 29" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "f:=x->(sin(x)^2)*(tan(x)^4)/ ((x^2+1))^2;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "g:=x->ln(f( x));" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "g(x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "h:=x->2*ln(sin(x))+4*ln(tan(x))-2*l n(x^2+1);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "plot(\{g(x),h( x)\},x=-5..5,y=-10..10);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 74 "Note. The graph above is to show the functions g(x) and h(x) are the same. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "diff(g(x),x);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "diff(h(x),x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "k:=x->f(x)*diff(h(x),x);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "k(x);" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 20 "f1:=x->diff(f(x),x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "f1(x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "plot(\{f(x),k(x)\},x=-5..5,y=-10..10);" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 37 "plot(\{f1(x),k(x)\},x=-5..5,y=-10..10);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 66 "The graph above is to show the functions \+ f1 and k(x) are the same." }}}}{MARK "3 0 0" 0 }{VIEWOPTS 1 1 0 3 2 1804 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }