1. Let f be the function graphed below:

![Graph of the function f](image)

a. Does f have an inverse in the domain of $[-4, 4]$? Ans. No. The function f violates the horizontal line test.

b. If we restrict the domain of f to be $[-2, 2]$, does f^{-1} exist? Yes, if you restrict the domain to $[-2, 2]$, then the function passes the horizontal line test.

c. If $f(-2) = 1, f(-1) = 3$ and $f(2) = 7$, find $f^{-1}(1), f^{-1}(3)$ and $f^{-1}(7)$.

[Ans. $f^{-1}(1) = -2, f^{-1}(3) = -1$ and $f^{-1}(7) = 2$.]

2. If $f(x) = -\sqrt{x - 2} + 1$

a. Does f^{-1} exist? [Ans. Yes]

b. Find the inverse of f: $f^{-1}(x) = (x - 1)^2 + 2, x \leq 1$

c. Sketch $y = f(x)$ and $y = f^{-1}(x)$ together if f^{-1} exists; otherwise sketch $y = f(x)$ only.

3. If $h(x) = (3x - 1)^{-2}$, find two functions f and g so that $h = f \circ g$. [Ans. $g(x) = (3x - 1), f(x) = x^{-2}$]

4. If $h(x) = \sqrt{3x - 1}$, find two functions f and g so that $h = f \circ g$. [Ans. $g(x) = 3x - 1$ and $f(x) = \sqrt{x}$]

5. Suppose $f(x) = \sqrt{x}$.
a. Find the function g so that $y = g(x)$ is a reflection of f with respect to y-axis. [Ans. $g(x) = \sqrt{-x}$.]

b. Find the inverse function for g. [$g^{-1}(x) = -x^2, x \geq 0$.]

c. Graph the functions g and g^{-1} together.

6. If $f(x) = \frac{3}{5}x - 1$, [done in class].
 a. explain why f has an inverse function..
 b. find the inverse function, f^{-1},
 c. check if $f(f^{-1}(x)) = f^{-1}(f(x)) = x,$
 d. graph f, and f^{-1} together.

7. If $f(x) = \sqrt{x + 1}$ and $g(x) = 2x^2 - 3$. Find
 a. $(f \circ g)(1) = f(g(1)) = 0$
 b. $(g \circ f)(1) = g(f(1)) = 1$
 c. $(f \cdot g)(1) = f(1)g(1) = -\sqrt{2}$

8. Let $f(x) = x^3$,
 a. find the function g so that $y = g(x)$ is a reflection of f with respect to the x-axis; [ans. $g(x) = -x^3$]
 b. find the function h so that $y = h(x)$ is a shifting of $y = f(x)$ left 3 units and down 3 units. [$h(x) = (x + 3)^3 - 3$]
 c. does h have an inverse? If so, sketch $y = h(x)$ and $y = h^{-1}(x)$ together. [$h^{-1}(x) = (x + 3)^{\frac{1}{3}} - 3$].