1. Let \(f(x) = -\sqrt{x} \).
 a. Sketch \(y = f(x) \).
 b. Find the function \(f_1 \) so that the graph of \(y = f_1(x) \) is being shifted to the right 2 units and down 3 units from \(f \).

2. If the graph of \(f(x) = (x - 3)^2 + 2 \) is given below and is marked as the darkest graph). Then identify the remaining functions, \(y = -f(x), y = -f(-x) - 1, \) and \(y = f(-(x+2)) - 1 \), whose graphs are given below.

3. If the graph of \(y = f(x) \) is shown below. Note that the \(x \) - intercepts are \(x = -1, 1 \) and 2; the local maximum is around \((-0.215, 2.11)\) and the local minimum is around \((1.549, -0.631)\).

 a. Sketch the graph of \(y = -f(x) \).
 b. Sketch the graph of \(y = f(-x) \).
 c. Sketch the graph of \(y = f(x - 1) + 1 \). [hint: right one and up one from \(y = f(x) \).]
 d. Sketch the graph of \(y = 2f(x) \).

4. Let \(f(x) = \sqrt{x + 50} \).
 a. Sketch the graph of \(y = f(x) \).
 b. Find the function \(g \) so that the graph of \(y = g(x) \) is being reflected along the \(x \) - axis, shifted to the right 2 units and down 3 units from \(f \).
c. Find the domain and range for the function g.