Section 11.2: Limits and Continuity

Practice HW from Stewart Textbook (not to hand in)
p. 755 \# 5-15 odd, 25-31 odd

Limits of Functions of Two Variables

A limit of a function of two variables $z=f(x, y)$ as (x, y) approaches a specific ordered pair.

Notation: We write

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

For a limit to exist, the function of 2 variables $z=f(x, y)$ must approach the same z value as (x, y) approaches (a, b) along all paths on the $x-y$ coordinate plane. If a function of two variables is defined at a point, we can immediately substitute to find the limit.

Example 1: Evaluate $\lim _{(x, y) \rightarrow(1,0)} 5 x+3 x y+y^{2}+1$, if it exists, or show that the limit does not exist.

Solution:

Notes:

1. To show that a limit does note exist we must produce two paths on the $x-y$ coordinate plane that does not give the same limit value.
2. To show a limit does exist, sometimes the Squeeze Theorem. For functions of one variable, this says that if $f(x) \leq g(x) \leq h(x)$ when x approaches a (not necessarily when x equals a and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then $\lim _{x \rightarrow a} g(x)=L$. This idea can be applied to functions of two variables.

Example 2: Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}}{x^{2}+y^{2}}$, if it exists, or show that the limit does not exist.

Solution:

Example 3: Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{6 x^{2} y}{2 x^{4}+y^{4}}$, if it exists, or show that the limit does not exist.

Solution:

Example 4: Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}$, if it exists, or show that the limit does not exist.

Solution:

Continuity

A function of two variables $f(x, y)$ is continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

Note: To find where a function of 2 variables is continuous, often it suffices to find where the function is defined.

Example 5: Determine the set of points where the function $f(x, y)=\frac{x}{\sqrt{x+y}}$ is continuous.

Solution:

Example 6: Determine the set of points where the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}, & \text { if }(x, y) \neq(0,0) \\
2 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

is continuous.
Solution: On this problem, the only point in question where the function may not be continuous at is the point $(0,0)$. We see first that f is defined at this point since
$f(0,0)=2$. From example 4, we see that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}=0$.
However, since

$$
0=\lim _{(x, y) \rightarrow(0,0)} f(x, y) \neq f(0,0)=2
$$

by the definition, the function is not continuous at the point $(0,0)$. This, the function is continuous for the following set:

$$
f \text { is continuous for the set }\{(x, y) \mid(x, y) \neq(0,0)\}
$$

