Section 10.2: Derivatives and Integrals of Vector Functions

Practice HW from Stewart Textbook (not to hand in) p. 707 # 3-21 odd, 29-35

Differentiation of Vector Functions

Differentiation of vector valued functions are done component wise in the natural way. Thus, for

1. 2D Case: If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, then $\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j}$

2. 3D Case: If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, then $\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$

Example 1: Find the derivative of the vector function

$$\mathbf{r}(t) = <\frac{1}{t}, \ 16t, \ \sqrt{t} > .$$

Solution:

Example 2: Find the derivative of the vector function

$$\mathbf{r}(t) = e^{2t} \mathbf{i} + \sin^2 t \mathbf{j} + \ln(t^2 + 1) \mathbf{k}$$

Solution:

Note: Look at properties involving the derivative of vector value functions on p. 705 Theorem 3 of Stewart text.

Tangent Vector to a Vector Valued Function

Recall that the derivative provides the tool for finding the tangent line to a curve. This same idea can be used to find a vector tangent to a curve at a point. We illustrate this idea in the following example.

Example 3: For the vector function $\mathbf{r}(t) = e^t \mathbf{i} + e^{-t} \mathbf{j}$,

- a. Sketch the plane curve with the given vector equation.
- b. Find $\mathbf{r'}(t)$
- c. Sketch the positive vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}'(t)$ at t = 0.

Solution:

Example 4: Find the parametric equations for the tangent line to the curve with the parametric equations $x = t^2 - 1$, $y = t^2 + 1$, z = t + 1 at the point (-1, 1, 1).

Solution:

Note: Sometimes, it is convenient the normalize a vector tangent to a vector valued function. This gives the *unit tangent vector*.

Unit Tangent Vector

Given a vector function **r** on an open interval I, the unit tangent vector $\mathbf{T}(t)$ is given by

$$T(t) = \frac{r'(t)}{|r'(t)|} = \frac{1}{|r'(t)|}r'(t)$$
 where $r'(t) \neq 0$

Example 5: Find the unit tangent vector $\mathbf{T}(t)$ for $\mathbf{r}(t) = 2\cos t \mathbf{i} + \sin 6t \mathbf{j} + 2t \mathbf{k}$ at $t = \frac{\pi}{6}$.

Solution: The unit tangent vector is given by the formula

.

$$T(t) = \frac{r'(t)}{|r'(t)|} = \frac{1}{|r'(t)|}r'(t)$$

Using $\mathbf{r}(t) = 2\cos t \mathbf{i} + \sin 6t \mathbf{j} + 2t \mathbf{k}$, we see that

 $r'(t) = -2\sin t i + 6\cos 6t j + 2k = < -2\sin t, 6\cos 6t, 2 >$

and

$$|\mathbf{r'}(t)| = \sqrt{(-2\sin t)^2 + (6\cos 6t)^2 + (2)^2} = \sqrt{4\sin^2 t + 36\cos^2 6t + 4}$$

Thus,

$$T(t) = \frac{1}{|r'(t)|} r'(t) = \frac{1}{\sqrt{4\sin^2 t + 36\cos^2 6t + 4}} < -2\sin t, 6\cos 6t, 2 >$$

At $t = \frac{\pi}{6}$, we have (continued on next page)

$$T\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{4\sin^2(\pi/6) + 36\cos^2(6\pi/6) + 4}} < -s2in(\pi/6), 6\cos(6\pi/6), 2 >$$

$$= \frac{1}{\sqrt{(1/2)^2 + 36(-1)^2 + 4}} < -2\left(\frac{1}{2}\right), 6(-1), 2 > \quad \text{(Note that } \sin(\pi/6) = 1/2, \ \cos(6\pi/6) = \cos\pi = -1\text{)}$$

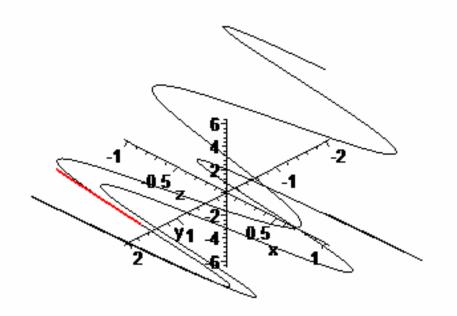
$$= \frac{1}{\sqrt{4(\frac{1}{4}) + 36(1) + 4}} < -1, -6, 2 >$$

$$= \frac{1}{\sqrt{1+36+4}} < -1, -6, 2 >$$

$$= \frac{1}{\sqrt{41}} < -1, -6, 2 >$$

$$= \frac{-1}{\sqrt{41}}, -\frac{6}{\sqrt{41}}, \frac{2}{\sqrt{41}} >$$

The following graph plots in 3D space the vector function $\mathbf{r}(t)$ and the corresponding unit tangent vector $\mathbf{T}(t)$ evaluated at $t = \frac{\pi}{6}$.



Integrals of Vector Functions

Integrals of Vector Valued Functions are computed component wise.

1. 2D Case: If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, then $\int \mathbf{r}(t)dt = \int f(t)dt \mathbf{i} + \int g(t)dt \mathbf{j}$ 2. 3D Case: If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, then $\int \mathbf{r}(t)dt = \int f(t)dt \mathbf{i} + \int g(t)dt \mathbf{j} + \int h(t)dt \mathbf{k}$

Example 6: Evaluate the integral $\int (3t^2 \mathbf{i} + 4t \mathbf{j} - 8t^3 \mathbf{k}) dt$

Solution:

Example 7: Evaluate the integral $\int_{0}^{\pi} (t^2 e^{t^3} \mathbf{i} + \sin t \mathbf{j} - 2t \mathbf{k}) dt$

Solution:

Example 8: Find $\mathbf{r}(t)$ if $\mathbf{r}'(t) = 2t \mathbf{j} + \sqrt{t} \mathbf{k}$ and $\mathbf{r}(0) = \mathbf{i} + \mathbf{j}$.

Solution: Writing $\mathbf{r'}(t) = 2t \mathbf{j} + \sqrt{t} \mathbf{k} = 2t \mathbf{j} + (t)^{\frac{1}{2}} \mathbf{k}$, we see that

$$\mathbf{r}(t) = \int \mathbf{r}'(t)dt$$

= $\int (2t \mathbf{i} + t^{\frac{1}{2}} \mathbf{k})dt$
= $2\frac{t^2}{2}\mathbf{i} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}}\mathbf{k} + \mathbf{C}$
= $t^2\mathbf{i} + \frac{2}{3}t^{\frac{3}{2}}\mathbf{k} + \mathbf{C}$

Thus, $\mathbf{r}(t) = t^2 \mathbf{i} + \frac{2}{3}t^{\frac{3}{2}} \mathbf{k} + \mathbf{C}$ and we need to use the initial condition $\mathbf{r}(0) = \mathbf{i} + \mathbf{j}$ to find the constant vector **C**. We see that

$$\mathbf{i} + \mathbf{j} = \mathbf{r}(0) = (0)^2 \mathbf{i} + \frac{2}{3}(0)^{\frac{3}{2}} \mathbf{k} + \mathbf{C}$$

which gives C = i + j. Thus, substituting for C gives

$$\mathbf{r}(t) = t^{2}\mathbf{i} + \frac{2}{3}t^{\frac{3}{2}}\mathbf{k} + (\mathbf{i} + \mathbf{j})$$

which, when combining like terms, gives the result.

$$\mathbf{r}(t) = (t^2 + 1)\mathbf{i} + \mathbf{j} + \frac{2}{3}t^{\frac{3}{2}}\mathbf{k}$$