## **Section 9.6: Functions and Surfaces**

Practice HW from Stewart Textbook (not to hand in) p. 683 # 9-13, 19, 20, 23, 24, 25 Handout Sheet 1-6, 7-27 odd

#### **Functions of More Than One Variable**

So far most of our experience has been working with functions of one variables. Some examples are:  $f(x) = x^2$ ,  $g(x) = \ln x$ ,  $h(x) = e^x$ . In this section, we want to examine functions and variables of multivariate equations and functions, like z = f(x, y) = -3x - 6y + 6 or  $z = f(x, y) = \cos y$ . We want to look at techniques for obtaining rough sketches of these types of graphs in 3D space.

#### Cylinders

A cylinder is formed by taking a curve in 3D space along with lines which intersect the curve projected in the direction of the coordinate axis <u>not included</u> in the equation. You can recognize this by seeing that one of the coordinate axis variables that are missing.

**Example 1:** Make a rough sketch of the equation  $x^2 + y^2 = 16$ .

Solution:



**Example 2:** Make a rough sketch of the equation  $f(x, y) = \cos y$ .

Solution:



## **Graphing Planes**

Recall that the equation of a plane is given by ax + by + cz = d (note that the variables *x*, *y*, To make a rough sketch of a plane in 3D space, it is easiest to find the points of intersection with the coordinate axes.

**Example 3:** Make a rough sketch of the equation f(x, y) = 4.

Solution:



**Example 4:** Make a rough sketch of the equation x + 2y = 4.

Solution:



**Example 5:** Make a rough sketch of the equation z = f(x, y) = -3x - 6y + 6.

Solution:



# **Quadric Surfaces**

Quadric surfaces are the 3D analog of the conic sections in 2D.

Conic Sections is 2D



Ellispe







## Hyperbola



Types of Quadric Surfaces (summary on p.682 text)

Ellispsoid

## Graph of Ellipsoid x\*2/a\*2 + y\*2/b\*2 + z\*2/c\*2 = 1



#### Hyperboloid (One Sheet)

Note: The axis the graph is projected along is the variable with the negative coefficient.



#### Graph of Hyberboloid (one sheet) x\*2/a\*2 + y\*2/b\*2 - z\*2/c\*2 = 1

#### Hyperboloid (Two Sheets)

Note: The axis the graph is projected along is the variable with the positive coefficient.

Graph of Hyberboloid (two sheets) x\*2/a\*2 - y\*2/b\*2 - z\*2/c\*2 = 1



### **Elliptic Cone**

Axis of projection is the variable with the negative coefficient

#### Graph of Elliptic Cone x\*2/a\*2 - y\*2/b\*2 + z\*2/c\*2 = 0



#### **Elliptic Paraboloid**

Axis of projection is the variable term raised to the 1<sup>st</sup> power.

Graph of Elliptic Paraboloid z = x\*2/a\*2 + y\*2/b\*2



#### Hyperbolic Paraboloid

#### Graph of Hyberbolic Paraboloid z = x\*2/a\*2 - y\*2/b\*2



**Note:** To sketch a 3D quadric surface, sometimes it can be useful to set each variable equal to 0 and sketch the corresponding 2D curve. This is known as a *trace*.

**Example 6:** Identify and make a rough sketch of the quadric surface  $x^2 - \frac{y^2}{4} - z^2 = 1$ .

Solution:



**Example 6:** Identify and make a rough sketch of the quadric surface  $16x^2 + 9y^2 + 9z^2 = 144$ . Solution:



**Example 6:** Identify and make a rough sketch of the quadric surface  $y = 4x^2 + z^2$ .

Solution:

