Section 9.4: The Cross Product

Practice HW from Stewart Textbook (not to hand in)

p. 664 \# 1, 7-17

Cross Product of Two Vectors

The cross product of two vectors produces a vector (unlike the dot product which produces s scalar) that has important properties. Before defining the cross product, we first give a method for computing a 2×2 determinant.

Definition: The determinant of a 2×2 matrix, denoted by $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$, is defined to be the scalar

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Example 1: Compute $\left|\begin{array}{cc}2 & -3 \\ 4 & 5\end{array}\right|$

Solution:

We next define the cross product of two vectors.

Definition: If $\boldsymbol{a}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$ and $\boldsymbol{b}=b_{1} \mathbf{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}$ be vectors in 3D space.
The cross product is the vector

$$
\boldsymbol{a} \times \boldsymbol{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \boldsymbol{i}+\left(a_{1} b_{3}-a_{3} b_{1}\right) \boldsymbol{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \boldsymbol{k}
$$

To calculate the cross product more easily without having to remember the formula, we using the following "determinant" form.

$$
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3} \\
\boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \boldsymbol{b}_{3}
\end{array}\right| \leftarrow \text { Compondard unit vectors in row } 1
$$

We calculate the 3×3 determinant as follows: (note the alternation in sign)

$$
\begin{aligned}
& =\boldsymbol{i}\left|\begin{array}{ll}
\boldsymbol{a}_{2} & \boldsymbol{a}_{3} \\
\boldsymbol{b}_{2} & \boldsymbol{b}_{3}
\end{array}\right|-\boldsymbol{j}\left|\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{3} \\
\boldsymbol{b}_{1} & \boldsymbol{b}_{3}
\end{array}\right|+\boldsymbol{k}\left|\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} \\
\boldsymbol{b}_{1} & \boldsymbol{b}_{2}
\end{array}\right| \\
& =\boldsymbol{i}\left(a_{2} b_{3}-a_{3} b_{2}\right)-j\left(a_{1} b_{3}-a_{3} b_{1}\right)+\boldsymbol{k}\left(a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
$$

Example 2: Given the vectors $\boldsymbol{a}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}$ and $\boldsymbol{b}=-2 \mathbf{i}+3 \boldsymbol{j}-\boldsymbol{k}$. Find
a. $\boldsymbol{a} \times \boldsymbol{b}$
b. $\boldsymbol{b} \times \boldsymbol{a}$
c. $\boldsymbol{a} \times \boldsymbol{a}$

Properties of the Cross Product

Let $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} be vectors, k be a scalar.

1. $\boldsymbol{a} \times \boldsymbol{b}=-(\boldsymbol{b} \times \boldsymbol{a}) \quad$ Note! $\boldsymbol{a} \times \boldsymbol{b} \neq(\boldsymbol{b} \times \boldsymbol{a})$
2. $\boldsymbol{a} \times(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a} \times \boldsymbol{b}+\boldsymbol{a} \times \boldsymbol{c}$
3. $k(\boldsymbol{a} \times \boldsymbol{b})=(k \boldsymbol{a}) \times \boldsymbol{b}=\boldsymbol{a} \times(k \boldsymbol{b})$
4. $0 \times \boldsymbol{a}=\boldsymbol{a} \times 0=0$
5. $\boldsymbol{a} \times \boldsymbol{a}=0$

Geometric Properties of the Cross Product

Let \boldsymbol{a} and \boldsymbol{b} be vectors

1. $\boldsymbol{a} \times \boldsymbol{b}$ is orthogonal to both \boldsymbol{a} and \boldsymbol{b}.

Example 3: Given the vectors $\boldsymbol{a}=\mathbf{i}-2 \boldsymbol{j}+3 \mathbf{k}$ and $\boldsymbol{b}=-2 \mathbf{i}+3 \boldsymbol{j}-\boldsymbol{k}$, show that the cross product $\boldsymbol{a} \times \boldsymbol{b}$ is orthogonal to both \boldsymbol{a} and \boldsymbol{b}.

Note: $\boldsymbol{i} \times \boldsymbol{j}=\boldsymbol{k}, \boldsymbol{i} \times \boldsymbol{k}=-\boldsymbol{j}, \boldsymbol{j} \times \boldsymbol{k}=\boldsymbol{i}$

2. $|\boldsymbol{a} \times \boldsymbol{b}|=|\boldsymbol{a}||\boldsymbol{b}| \sin \theta$
3. $\boldsymbol{a} \times \boldsymbol{b}=0$ if and only $\boldsymbol{a}=k \boldsymbol{b}$, that is, if the vectors \boldsymbol{a} and \boldsymbol{b} are parallel.
4. $|\boldsymbol{a} \times \boldsymbol{b}|$ gives the area having the vectors \boldsymbol{a} and \boldsymbol{b} as its adjacent sides.

Example 4: Given the points $P(0,-2,0), Q(-1,3,4)$, and $R(3,0,6)$.
a. Find a vector orthogonal to the plane through these points.
b. Find the area of the parallelogram with the vectors $\overrightarrow{\boldsymbol{P Q}}$ and $\overrightarrow{\boldsymbol{P} \boldsymbol{R}}$ as its adjacent sides.
c. Find area of the triangle $P Q R$.

Solution: Part a) The plane containing the given points will have the vectors $\overrightarrow{\boldsymbol{P Q}}$ and $\overrightarrow{\boldsymbol{P} \boldsymbol{R}}$ as its adjacent sides. We first compute these vectors as follows:

The vector connecting $P(0,-2,0)$ and $Q(-1,3,4)$ is $\overrightarrow{\boldsymbol{P} \boldsymbol{Q}}=<-1-0,3--2,4-0\rangle=<-1,5,4>$.
The vector connecting $P(0,-2,0)$ and $R(3,0,6)$ is $\overrightarrow{\boldsymbol{P} \boldsymbol{R}}=\langle 3-0,0--2,6-0\rangle=\langle 3,2,6\rangle$.

The vector orthogonal to the plane will be the vectors orthogonal to $\overrightarrow{\boldsymbol{P Q}}$ and $\overrightarrow{\boldsymbol{P R}}$, which is precisely the cross product $\overrightarrow{\boldsymbol{P Q}} \times \overrightarrow{\boldsymbol{P} \boldsymbol{R}}$. Thus, we have

$$
\begin{aligned}
\overrightarrow{\boldsymbol{P Q}} \times \overrightarrow{\boldsymbol{P R}} & =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
-1 & 5 & 4 \\
3 & 2 & 6
\end{array}\right| \\
& =\boldsymbol{i}\left|\begin{array}{ll}
5 & 4 \\
2 & 6
\end{array}\right|-\boldsymbol{j}\left|\begin{array}{cc}
-1 & 4 \\
3 & 6
\end{array}\right|+\boldsymbol{k}\left|\begin{array}{cc}
-1 & 5 \\
3 & 2
\end{array}\right| \\
& =\mathbf{i}(5 \cdot 6-4 \cdot 2)-\boldsymbol{j}(-1 \cdot 6-4 \cdot 3)+\boldsymbol{k}(-1 \cdot 2-5 \cdot 3) \\
& =22 \mathbf{i}+18 \boldsymbol{j}-17 \boldsymbol{k}
\end{aligned}
$$

The following displays a graph of the vectors $\overrightarrow{\boldsymbol{P Q}}$ (in blue), $\overrightarrow{\boldsymbol{P} \boldsymbol{R}}$ (in red), and their cross product $\overrightarrow{\boldsymbol{P Q}} \times \overrightarrow{\boldsymbol{P} \boldsymbol{R}}$ (in green).

Part b) The area of the parallelogram with the vectors $\overrightarrow{\boldsymbol{P Q}}$ and $\overrightarrow{\boldsymbol{P R}}$ as its adjacent sides is precisely the length of the cross product of these two vectors that we calculated in part
a. Using the fact that $\overrightarrow{\boldsymbol{P Q}} \times \overrightarrow{\boldsymbol{P R}}=22 \boldsymbol{i}+18 \boldsymbol{j}-17 \boldsymbol{k}$, we have that

$$
\underset{\text { Area of }}{\text { arallelogram }}=|\overrightarrow{\boldsymbol{P Q}} \times \overrightarrow{\boldsymbol{P R}}|=\sqrt{(22)^{2}+(18)^{2}+(-17)^{2}}=\sqrt{484+324+289}=\sqrt{1097} \approx 33.1 \text { square } \text { units }
$$

Part c.) The area of the triangle $P Q R$ represents exactly one-half of the area of the parallelogram with the vectors $\overrightarrow{\boldsymbol{P Q}}$ and $\overrightarrow{\boldsymbol{P} \boldsymbol{R}}$ as its adjacent sides that we found in part b. Hence, we have

$$
\begin{gathered}
\text { Area of } \\
\text { Triangle } P Q R
\end{gathered}=\frac{1}{2}(\text { Area of the Parallelogram })=\frac{1}{2}|\overrightarrow{\boldsymbol{P Q}} \times \overrightarrow{\boldsymbol{P} \boldsymbol{R}}|=\frac{1}{2} \sqrt{1097} \approx 16.6 \begin{gathered}
\text { square } \\
\text { units }
\end{gathered}
$$

