## Section 9.3: The Dot Product

Practice HW from Stewart Textbook (not to hand in)
p. 655 \# 3-8, 11, 13-15, 17, 23-26

## Dot Product of Two Vectors

The dot product of two vectors gives a scalar that is computed in the following manner.
In 2D, if $\boldsymbol{a}=<a_{1}, a_{2}>$ and $\boldsymbol{b}=<b_{1}, b_{2}>$, then
Dot product $=\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}$
In 3D, if $\boldsymbol{a}=<a_{1}, a_{2}, a_{3}>$ and $\boldsymbol{b}=<b_{1}, b_{2}, b_{3}>$, then

$$
\text { Dot product }=\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

## Properties of the Dot Product $\mathrm{p}, 654$

Let $\boldsymbol{a}, \boldsymbol{b}$, and $\boldsymbol{c}$ be vectors, $k$ be a scalar.

1. $\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{b} \cdot \boldsymbol{a}$
2. $\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \cdot \boldsymbol{c}$
3. $0 \cdot a=0$
4. $k(\boldsymbol{a} \cdot \boldsymbol{b})=(k \boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{a} \cdot(k \boldsymbol{b})$
5. $\boldsymbol{a} \cdot \boldsymbol{a}=|\boldsymbol{a}|^{2}$

Example 1: Given $\boldsymbol{a}=2 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k}$ and $\boldsymbol{b}=\boldsymbol{i}-3 \boldsymbol{j}+2 \boldsymbol{k}$, find
a. $\boldsymbol{a} \cdot \boldsymbol{b}$
b. $\boldsymbol{b} \cdot \boldsymbol{a}$
c. $\boldsymbol{a} \cdot \boldsymbol{a}$
d. $|\boldsymbol{a}|^{2}$
e. $(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{b}$
f. $a \cdot(2 v)$

Solution:

## Angle Between Two Vectors

Given two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ separated by an angle $\theta, 0 \leq \theta \leq \pi$.


Then

$$
\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}
$$

Then we can write the dot product as

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta
$$

Example 2: Find the angle $\theta$ between the given vectors $\boldsymbol{a}=<3,1>$ and $\boldsymbol{b}=<2,-1\rangle$.

## Solution:

## Parallel Vectors

Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel of there is a scalar $k$ where $\boldsymbol{a}=k \boldsymbol{b}$.


## Orthogonal Vectors

Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are orthogonal (intersect at a $90^{\circ}$ angle) of

$$
\boldsymbol{a} \cdot \boldsymbol{b}=0
$$



Note: If two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are orthogonal, they intersect at the angle $\theta=\frac{\pi}{2}$ and

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \left(\frac{\pi}{2}\right)=|\boldsymbol{a}||\boldsymbol{b}|(\mathbf{0})=\mathbf{0}
$$

Example 3: Determine whether the two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are orthogonal, parallel, or neither.
a. $\boldsymbol{a}=\langle 2,18\rangle, \boldsymbol{b}=\left\langle\frac{3}{2},-\frac{1}{6}\right\rangle$
b. $\boldsymbol{a}=-4 \boldsymbol{i}-5 \boldsymbol{j}+6 \boldsymbol{k}, \boldsymbol{b}=8 \mathbf{i}+10 \boldsymbol{j}-12 \boldsymbol{k}$
c. $\boldsymbol{a}=-4 \boldsymbol{i}-5 \boldsymbol{j}+6 \boldsymbol{k}, \boldsymbol{b}=5 \boldsymbol{j}-6 \boldsymbol{k}$

## Solution:

## Projections

Suppose we are given the vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ in the following diagram


The vector in red $\boldsymbol{w}=\operatorname{proj}_{\boldsymbol{a}} \boldsymbol{b}$ is called the vector projection of the vector $\boldsymbol{b}$ onto the vector $\boldsymbol{a}$. Since $\boldsymbol{w}$ is a smaller vector in length the vector $\boldsymbol{a}$, it is "parallel" to $\boldsymbol{a}$ and hence is a scalar multiple of $\boldsymbol{a}$. Thus, we can write $\boldsymbol{w}=k \boldsymbol{a}$, The scalar $k$ is know as the scalar projection of vector $\boldsymbol{b}$ onto the vector $\boldsymbol{a}$ (also known as the component of $\boldsymbol{b}$ along $\boldsymbol{a}$ ). We assign the scalar $k$ the notation

$$
k=\boldsymbol{c o m p}_{\boldsymbol{a}} \boldsymbol{b}
$$

Our goal first is to find $k$. From the definition of a right triangle,

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{|\boldsymbol{w}|}{|\boldsymbol{b}|}=\frac{|\boldsymbol{k} \boldsymbol{a}|}{|\boldsymbol{b}|}=\frac{\boldsymbol{k}|\boldsymbol{a}|}{|\boldsymbol{b}|}
$$

Also, the definition of the dot product says that

$$
\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}
$$

Hence, we can say that

$$
\frac{\boldsymbol{k}|\boldsymbol{a}|}{|\boldsymbol{b}|}=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}
$$

Solving for $k$ gives

$$
k=\frac{|b|}{|a|} \frac{a \cdot b}{|a||b|}=\frac{a \cdot b}{|a|^{2}}
$$

To get the vector projection, we compute the vector $\boldsymbol{w}$. This gives the following result.

$$
w=k a=\frac{a \cdot b}{|a|^{2}} a
$$

Summarizing, we obtain the following results.

## Scalar and Vector Projection

Scalar Projection of $\boldsymbol{b}$ onto $\boldsymbol{a}: \quad \quad \operatorname{comp}_{\boldsymbol{a}} \boldsymbol{b}=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}|^{2}}$

Vector Projection of $\boldsymbol{b}$ onto $\boldsymbol{a}: \quad \quad \operatorname{proj}_{\boldsymbol{a}} \boldsymbol{b}=\left(\operatorname{comp}_{a} \boldsymbol{b}\right) \boldsymbol{a}=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}|^{2}} \boldsymbol{a}$

Example 4: Find the scalar and vector projections of $\boldsymbol{b}$ onto $\boldsymbol{a}$ if $\boldsymbol{a}=<0,2,3>$ and <-2,1,1>

Solution: The scalar projection of of $\boldsymbol{b}$ onto $\boldsymbol{a}$ is given by the formula

$$
\operatorname{comp}_{a} b=\frac{a \cdot b}{|a|^{2}}
$$

We see that

$$
\boldsymbol{a} \cdot \boldsymbol{b}=(0)(-2)+(2)(1)+(3)(1)=0+2+3=5
$$

and that

$$
|\boldsymbol{a}|^{2}=\left(\sqrt{(0)^{2}+(2)^{2}+(3)^{2}}\right)^{2}=(\sqrt{13})^{2}=13 .
$$

Thus the scalar projection is

$$
\text { Scalar projection of } \boldsymbol{b} \text { onto } \boldsymbol{a}=\operatorname{comp}_{\boldsymbol{a}} \boldsymbol{b}=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}|^{2}}=\frac{5}{13} .
$$

Hence, the vector projection is
Vector projection of $\boldsymbol{b}$ onto $\boldsymbol{a}=\left(\operatorname{comp}_{a} \boldsymbol{b}\right) \boldsymbol{a}=\frac{5}{13}\langle 0,2,3\rangle=\left\langle 0, \frac{10}{13}, \frac{15}{13}\right\rangle$.

