Section 9.2: Vectors

Practice HW from Stewart Textbook (not to hand in)

 p. 649 \# 7-20
Vectors in 2D and 3D Space

Scalars are real numbers used to denote the amount (magnitude) of a quantity. Examples include temperature, time, and area.

Vectors are used to indicate both magnitude and direction. The force put on an object or the velocity a pitcher throws a baseball are examples.

Notation for Vectors

Suppose we draw a directed line segment between the points P (called the initial point) and the point Q (called the terminal point).

We denote the vector between the points P and Q as $\boldsymbol{v}=\overrightarrow{\boldsymbol{P} \boldsymbol{Q}}$. We denote the length or magnitude of this vector as

$$
\text { Length of } \boldsymbol{v}=|\boldsymbol{v}|=|\overrightarrow{\boldsymbol{P Q}}|
$$

We would like a way of measuring the magnitude and direction of a vector. To do this, we will example vectors both in the 2D and 3D coordinate planes.

Vectors in 2D Space

Consider the $x-y$ coordinate plane. In 2D, suppose we are given a vector \boldsymbol{v} with initial point at the origin $(0,0)$ and terminal point given by the ordered pair $\left(v_{1}, v_{2}\right)$.

The vector \boldsymbol{v} with initial point at the origin $(0,0)$ is said to be in standard position. The component for of \boldsymbol{v} is given by $\boldsymbol{v}=\left\langle v_{1}, v_{2}\right\rangle$.

Example 1: Write in component form and sketch the vector in standard position with terminal point $(1,2)$.

Solution:

Vectors in 3D Space

Vectors is 3D space are represented by ordered triples $\boldsymbol{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. A vector \boldsymbol{v} is standard position has its initial point at the origin $(0,0,0)$ with terminal point given by the ordered triple $\left(v_{1}, v_{2}, v_{3}\right)$.

Example 2: Write in component form and sketch the vector in standard position with terminal point (-3, 4, 2).

Solution:

Some Facts about Vectors

1. The zero vector is given by $\mathbf{0}=<0,0>$ in 2 D and $\mathbf{0}=<0,0,0>$ in 3 D .
2. Given the points $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ in 2 D not at the origin.

The component for the vector \boldsymbol{a} is given by $\boldsymbol{a}=\overrightarrow{\boldsymbol{A} \boldsymbol{B}}=\left\langle a_{1}, a_{2}\right\rangle=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$.
Given the points $A=\left(x_{1}, y_{1}, z_{1}\right)$ and $B=\left(x_{2}, y_{2}, z_{2}\right)$ in 3D not at the origin.

The component for the vector \boldsymbol{a} is given by $\boldsymbol{a}=\overrightarrow{\boldsymbol{A} \boldsymbol{B}}=<a_{1}, a_{2}, a_{3}>=<x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>$.
3. The length (magnitude) of the 2 D vector $\left.\boldsymbol{a}=<a_{1}, a_{2}\right\rangle$ is given by

$$
|\boldsymbol{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

The length (magnitude) of the 3D vector $\boldsymbol{a}=<a_{1}, a_{2}, a_{3}>$ is given by

$$
|\boldsymbol{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

4. If $|\boldsymbol{a}|=1$, then the vector \boldsymbol{a} is called a unit vector.
5. $|\boldsymbol{a}|=\mathbf{0}$ if and only if $\boldsymbol{a}=\mathbf{0}$.

Example 3: Given the points $A(3,-5)$ and $B(4,7)$.
a. Find a vector \boldsymbol{a} with representation given by the directed line segment $\overrightarrow{\boldsymbol{A B}}$.
b. Find the length $|\boldsymbol{a}|$ of the vector \boldsymbol{a}.
c. Draw $\overrightarrow{\boldsymbol{A B}}$ and the equivalent representation starting at the origin.

Solution:

Example 4: Given the points $A(2,-1,-2)$ and $B(-4,3,7)$..
a. Find a vector \boldsymbol{a} with representation given by the directed line segment $\overrightarrow{\boldsymbol{A B}}$.
b. Find the length $|\boldsymbol{a}|$ of the vector \boldsymbol{a}.
c. Draw $\overrightarrow{\boldsymbol{A B}}$ and the equivalent representation starting at the origin.

Solution:

Facts and Operations With Vectors 2D

Given the vectors $\boldsymbol{a}=<a_{1}, a_{2}>$ and $\boldsymbol{b}=<b_{1}, b_{2}>, k$ be a scalar. Then the following operations hold.

1. $\left.\boldsymbol{a}+\boldsymbol{b}=\left\langle a_{1}, a_{2}\right\rangle+\left\langle b_{1}, b_{2}\right\rangle=<a_{1}+b_{1}, a_{2}+b_{2}\right\rangle$. (Vector Addition)
$\boldsymbol{a}-\boldsymbol{b}=\left\langle a_{1}, a_{2}\right\rangle-\left\langle b_{1}, b_{2}\right\rangle=\left\langle a_{1}-b_{1}, a_{2}-b_{2}\right\rangle$. (Vector Subtraction)
2. $k \boldsymbol{a}=k\left\langle a_{1}, a_{2}\right\rangle=<k a_{1}, k a_{2}>$. (Scalar-Vector Multiplication)
3. Two vectors are equal if and only if their components are equal, that is, $\boldsymbol{a}=\boldsymbol{b}$ if and only if $a_{1}=b_{1}$ and $a_{2}=b_{2}$.

Facts and Operations With Vectors 3D

Given the vectors $\boldsymbol{a}=<a_{1}, a_{2}, a_{3}>$ and $\left.\boldsymbol{b}=<b_{1}, b_{2}, b_{3}\right\rangle, k$ be a scalar. Then the following operations hold.

1. $\left.\boldsymbol{a}+\boldsymbol{b}=<a_{1}, a_{2}, a_{3}>+<b_{1}, b_{2}, b_{3}\right\rangle=<a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}>$. (Vector Addition) $\boldsymbol{a}-\boldsymbol{b}=<a_{1}, a_{2}, a_{3}>-<b_{1}, b_{2}, b_{3}>=<a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}>$. (Vector Subtraction)
2. $k \boldsymbol{a}=k<a_{1}, a_{2}, a_{3}>=<k a_{1}, k a_{2}, k a_{3}>$. (Scalar-Vector Multiplication)
3. Two vectors are equal if and only if their components are equal, that is, $\boldsymbol{a}=\boldsymbol{b}$ if and only if $a_{1}=b_{1}, a_{2}=b_{2}$, and $a_{3}=b_{3}$.

Example 5: Given the vectors $\boldsymbol{a}=<3,1>$ and $\boldsymbol{b}=<1,2>$, find
a. $\boldsymbol{a}+\boldsymbol{b}$
c. $3 \boldsymbol{a}-2 \boldsymbol{b}$
b. $2 \boldsymbol{b}$
d. $|3 \boldsymbol{a}-2 \boldsymbol{b}|$

Solution:

Unit Vector in the Same Direction of the Vector a

Given a non-zero vector \boldsymbol{a}, a unit vector \boldsymbol{u} (vector of length one) in the same direction as the vector \boldsymbol{a} can be constructed by multiplying \boldsymbol{a} by the scalar quantity $\frac{1}{|\boldsymbol{a}|}$, that is, forming

$$
\boldsymbol{u}=\frac{1}{|\boldsymbol{a}|} \boldsymbol{a}=\frac{\boldsymbol{a}}{|\boldsymbol{a}|}
$$

Multiplying the vector $|\boldsymbol{a}|$ by $\frac{1}{|\boldsymbol{a}|}$ to get the unit vector \boldsymbol{u} is called normalization.

Example 6: Given the vector $\boldsymbol{a}=<-4,5,3>$.
a. Find a unit vector in the same direction as \boldsymbol{a} and verify that the result is indeed a unit vector.
b. Find a vector that has the same direction as \boldsymbol{a} but has length 10 .

Solution: Part a) To compute the unit vector \boldsymbol{u} in the same direction of $\boldsymbol{a}=<-4,5,3>$, we first need to find the length of \boldsymbol{a} which is given by

$$
|\boldsymbol{a}|=\sqrt{(-4)^{2}+(5)^{2}+(3)^{2}}=\sqrt{16+25+9}=\sqrt{50}=\sqrt{25 \cdot 2}=5 \sqrt{2}
$$

Then

$$
\boldsymbol{u}=\frac{1}{|\boldsymbol{a}|} \boldsymbol{a}=\frac{1}{5 \sqrt{2}}<-4,5,3>=<-\frac{4}{5 \sqrt{2}}, \frac{5}{5 \sqrt{2}}, \frac{3}{5 \sqrt{2}}>=<-\frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{3}{5 \sqrt{2}}>.
$$

For \boldsymbol{u} to be a unit vector, we must show that $|\boldsymbol{u}|=1$. Computing the length of $|\boldsymbol{u}|$ we obtain

$$
|\boldsymbol{u}|=\sqrt{\left(-\frac{4}{5 \sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{3}{5 \sqrt{2}}\right)^{2}}=\sqrt{\frac{16}{25 \cdot 2}+\frac{1}{2}+\frac{9}{25 \cdot 2}}=\sqrt{\frac{16}{50}+\frac{25}{50}+\frac{9}{50}}=\sqrt{\frac{50}{50}}=\sqrt{1}=1
$$

Part b) Since the unit vector \boldsymbol{u} found in part a has length 1 is in the same direction of \boldsymbol{a}, multiplying the unit vector \boldsymbol{u} by 10 will give a vector, which we will call \boldsymbol{b}, with a length of 10 , in the same direction of \boldsymbol{a}. Thus,

$$
\left.\boldsymbol{b}=10 \boldsymbol{u}=10<-\frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{3}{5 \sqrt{2}}\right\rangle=\left\langle-\frac{40}{5 \sqrt{2}}, \frac{10}{\sqrt{2}}, \frac{30}{5 \sqrt{2}}\right\rangle=\left\langle-\frac{8}{\sqrt{2}}, \frac{10}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right\rangle
$$

The following graph shows the 3 vectors on the same graph, where you can indeed see they are all pointing in the same direction (the unit vector \boldsymbol{u} is in red, the given vector \boldsymbol{a} in blue, and the vector \boldsymbol{b} in green.

Standard Unit Vectors

In 2 D , the unit vectors $<1,0\rangle$ and $<0,1\rangle$ are the standard unit vectors. We denote these vectors as $\boldsymbol{i}=<1,0\rangle$ and $\boldsymbol{j}=<0,1\rangle$. The following represents their graph in the $x-y$ plane.

Any vector in component form can be written as a linear combination of the standard unit vectors \boldsymbol{i} and \boldsymbol{j}. That is, the vector $\boldsymbol{a}=\left\langle a_{1}, a_{2}\right\rangle$ in component for can be written

$$
\left.\boldsymbol{a}=<a_{1}, a_{2}>=<a_{1}, 0>+\left\langle 0, a_{2}\right\rangle=a_{1}<1,0>+a_{2}<0,1\right\rangle=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}
$$

in standard unit vector form. For example, the vector $\langle 2,-4\rangle$ in component form can be written as

$$
<2,-4>=2 \mathbf{i}-4 \mathbf{j}
$$

in standard unit vector form.

In 3D, the standard unit vectors are $\boldsymbol{i}=\langle 1,0,0\rangle, \boldsymbol{j}=\langle 0,1,0\rangle$, and $\boldsymbol{k}=\langle 0,0,1\rangle$.

Any vector in component form can be written as a linear combination of the standard unit vectors \boldsymbol{i} and \boldsymbol{j} and \boldsymbol{k}. That is, That is, the vector $\boldsymbol{a}=<a_{1}, a_{2}, a_{3}>$ in component for can be written

$$
\begin{aligned}
& \boldsymbol{a}= \\
& <a_{1}, a_{2}, a_{3}>=<a_{1}, 0,0>+<0, a_{2}, 0>+<0,0, a_{3}>=a_{1}<1,0,0>+a_{2}<0,1,0>+a_{3}<0,0,1> \\
& =a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}
\end{aligned}
$$

in standard unit vector from. For example the vector the vector $\langle 2,-4,5\rangle$ in component form can be written as

$$
<2,-4,5>=2 \boldsymbol{i}-4 \boldsymbol{j}+5 \boldsymbol{k}
$$

in standard unit vector form.

Example 7: Given the vectors $\boldsymbol{a}=\mathbf{i}+2 \boldsymbol{j}+3 \boldsymbol{k}, \boldsymbol{b}=2 \boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}$, and $\boldsymbol{c}=4 \mathbf{i}-4 \boldsymbol{k}$, find
a. $\boldsymbol{a}-\boldsymbol{b}$
b. $|\boldsymbol{a}-\boldsymbol{b}|$
c. $\left|5 \boldsymbol{a}-3 \boldsymbol{b}-\frac{1}{2} \boldsymbol{c}\right|$

Solution:

