## Section 9.1: Three Dimensional Coordinate Systems

Practice HW from Stewart Textbook (not to hand in)
p. 641 \# 1, 2, 3, 7, 10, 11, 13, 14, 15b, 16

## 3-D Coordinate Axes

In this chapter, we want to consider the 3 dimensional coordinate axes.


Points are located using ordered triples ( $x, y, z$ ).

Example 1: Plot the points $(1,1,1),(2,5,0),(-2,3,4),(1,1,-4)$, and $(2,-5,3)$.

## Solution:



Note: The 3-D coordinate axes divides the coordinate system into 3 distinct planes - the $x-y$ plane $z=0$, the $y$-z plane $x=0$, and the $x$-z plane $y=0$. (see next page)

## Plot of $x-y$ plane $z=0$



Plot ol $x-z$ plane $y=0$


Plot of $y$-z plane $x=0$


Suppose we are now given the two points $P=\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ in 3D space.


Then

$$
\begin{aligned}
& \text { Distance between the points } \\
& \left(x_{1}, y_{1}, z_{1}\right) \text { and }\left(x_{2}, y_{2}, z_{2}\right)
\end{aligned}=d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

$$
\begin{aligned}
& \text { Midpoint between the points } \\
& \left(x_{1}, y_{1}, z_{1}\right) \text { and }\left(x_{2}, y_{2}, z_{2}\right)
\end{aligned}=M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Example 1: Find the distance and midpoint between the points $(2,1,4)$ and $(6,5,2)$.

## Solution:

Recall: An isosceles triangle is a triangle where the lengths of two of its sides are equal. A right triangle is a triangle with a 90 degree angle where the sum of squares of the shorter sides equals the square of the hypotenuse.


Icosceles Triangle


Right Triangle

Example 2: Find the lengths of the sides of the triangle PQR if $\mathrm{P}=(1,-3,-2)$, $\mathrm{Q}=(5,-1,2)$ and $\mathrm{R}=(-1,1,2)$. Deterrmine if the resulting triangle is an isosceles or a right triangle.

Solution: We will use the distance formula to find the length of the triangles sides PQ, QR , and RP. We obtain the following results:

Length of side $\mathrm{PQ}=\sqrt{(5-1)^{2}+(-1--3)^{2}+(2--2)^{2}}=\sqrt{4^{2}+2^{2}+4^{2}}=\sqrt{36}=6$.

Length of side $\mathrm{QR}=\sqrt{(-1-5)^{2}+(1--1)^{2}+(2-2)^{2}}=\sqrt{(-6)^{2}+2^{2}+0^{2}}=\sqrt{40}=\sqrt{4 \cdot 10}=2 \sqrt{10}$

Length of side RP $=\sqrt{(1--1)^{2}+(-3-1)^{2}+(-2-2)^{2}}=\sqrt{2^{2}+(-4)^{2}+(-4)^{2}}=\sqrt{36}=6$.

Since sides PQ and RP are equal, the triangle is isosceles. It is not a right triangle since the sum of squares of the shorter sides PQ and RP does not equal the square of the longest side QR. That is,

$$
(P Q)^{2}+(Q R)^{2}=6^{2}+6^{2}=36+36=72 \neq(2 \cdot \sqrt{10})^{2}=4 \cdot 10=40=(Q R)^{2} .
$$

The following picture graphs the isosceles triangle in 3D space.


## Standard Equation of a Sphere



## Standard Equation of a Sphere

The standard equation of a sphere with radius $r$ and center ( $x_{0}, y_{0}, z_{0}$ ) is given by

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}
$$

In particular, if the center of the sphere is at the origin, that is, if $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,0)$, then the equation becomes

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

Fact: When the standard equation of a sphere is expanded and simplify, we obtain the general equation of a sphere

## Standard Equation of a Sphere

$$
A x^{2}+A y^{2}+A z^{2}+B x+C y+D z+E=0
$$

Example 3: Find the standard and general equation of a sphere that passes through the point $(2,1,4)$ and has center $(4,3,3)$

## Solution:

Note: To convert the general form of the sphere equation to standard form, we must complete the square.

Example 4: Find the center and radius of the sphere

$$
4 x^{2}+4 y^{2}+4 z^{2}-4 x-32 y+8 z+33=0
$$

## Solution:

