Section 8.9: Applications of Taylor Polynomials

Practice HW from Stewart Textbook (not to hand in) p. 628 # 1-21 odd

Taylor Polynomials

In this section, we use Taylor polynomials to approximate a given function f(x) near a point x = a.

Definition: The n^{th} Taylor polynomial $T_n(x)$ at a function f(x) at x = a is given by

$$T_{n(x)} = f(a) + f'(a)\frac{f'(a)}{1!}(x-a)\frac{f''(a)}{2!}(x-a)^2 + \frac{f''(a)}{3!}(x-a)^3 + \dots + \frac{f^n(a)}{n!}(x-a)^n$$

where $T_n(a) = f(a)$, $T'_n(a) = f'(a)$, $T''_n(a) = f''(a)$, ..., $T^n_n(a) = f^n(a)$.

Example 1: Find the Taylor (Maclaurin) polynomial for $f(x) = e^x$ at a = 0 and n = 2 and use it to approximate $e^{0.01}$.

Solution:

Note: In general, the higher the degree of the Taylor polynomial and the closer we are to the point x = a that the Taylor polynomial is centered at, the better the approximation

Example 2: Find the Taylor (Maclaurin) polynomial for $f(x) = e^x$ at a = 0 and n = 4 and use it to approximate $e^{0.01}$.

Solution:

The following table illustrates the accuracy of the Taylor polynomials $T_2(x) = 1 + x + \frac{1}{2}x^2$

x	-8	-1	-0.1	-0.01	0	0.01	0.1	1	5
$f(x) = e^x$	0.0003	0.367879	.904837	0.9900498	1	1.0100501	1.105170	2.7188281	148.413
$T_2(x)$	25	0.5	0.905	0.99005	1	1.01005	1.105	2.5	18.5
$T_4(x)$	110.3	0.375	0.904837	0.9900498	1	1.0100501	1.105170	2.7083333	65.375

and
$$T_4(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4$$
 to $f(x) = e^x$ near $x = 0$.

As can be seen, the closer the value of x is nearer to zero, the better the approximation the Taylor polynomials provided for the function. This is further illustrated by the following graphs:

Note: The following Maple commands can be used to find the 2nd and 4th degree Taylor polynomials for $f(x) = e^x$ near x = 0.

Example 3: Find the Taylor polynomial $T_n(x)$ for the function $f(x) = \sqrt{3 + x^2}$ at a = 1 for n = 3.

Solution:

Error of Approximation

Can be used to determine how close a Taylor polynomial $T_n(x)$ is to f(x).

We define the function $R_n(x)$, which represents the error between f(x) and $T_n(x)$, as follows:

$$R_n(x) = f(x) - T_n(x)$$

Estimation of Error – Taylor's Inequality

If $\left| f^{n+1}(x) \right| \le M$ for $|x-a| \le d$ $(-d+a \le x \le d+a)$, then

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$

Note: It is many times useful to use Maple to help determine the error of approximation.

Example 4: For $f(x) = \ln(1+2x)$, use Maple to

- a. Approximate f by a Taylor polynomial of degree n = 3 centered at a = 1.
- b. Use Taylor's inequality to estimate the accuracy of the approximation $f(x) \approx T_n(x)$ f for $0.5 \le x \le 1.5$.

Solution (Part a): The following commands will compute and store the 3^{rd} degree Taylor polynomial centered at x = a = 1.

> with(Student[Calculus1]): > T3 := TaylorApproximation(ln(1+2*x), x = 1, order = 3); $T3 := \ln(3) + \frac{38x}{27} - \frac{80}{81} - \frac{14x^2}{27} + \frac{8x^3}{81}$

Thus,

$$T_3(x) = \ln(3) - \frac{80}{81} + \frac{38}{27}x - \frac{14}{27}x^2 + \frac{8}{81}x^3$$

Solution (Part b): It is important to note that the inequality $|x-1| \le 0.5$ by definition says that $-0.5 \le x-1 \le 0.5$. Adding 1 to all sides of the inequality gives $0.5 \le x \le 1.5$, which is the given interval. The Taylor inequality estimate says that if

$$\left| f^{n+1}(x) \right| \le M$$
, then $|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$ for $|x-a| \le d$

For this problem, n = 3, a = 1, and d = 0.5. Thus, the equality becomes

$$|R_3(x)| \le \frac{M}{4!} |x-1|^4$$
 for $|x-1| \le 0.5$

This inequality is guaranteed to be true if $|f^{n+1}(x)| \le M$, or $|f^4(x)| \le M$ for $0.5 \le x \le 1.5$. Our goal is to find an upper bound for $|f^4(x)|$ on the interval $0.5 \le x \le 1.5$, that is, a value for which $|f^4(x)|$ is guaranteed to be smaller than for the entire interval. We can use a graph of $|f^4(x)|$ to find *M*. The following Maple commands can be used.

As, the graph shows, the fourth order derivative $|f^4(x)|$ has a maximum of 6 on the interval $0.5 \le x \le 1.5$ and this maximum occurs at x = 0.5. Thus, M = 6 and $|f^4(x)| \le 6$ when x = 0.5. Hence,

$$|R_{3}(x)| \le \frac{M}{4!} |x-1|^{4} = \frac{6}{24} |0.5-1|^{4} = \frac{1}{4} |-0.5|^{4} = (0.25)(0.5)^{4} = (0.25)(0.0625) = 0.015625$$

Thus, this says for any value of x in the interval $0.5 \le x \le 1.5$, the function $f(x) = \ln(1+2x)$ and the Taylor polynomial $T_3(x) = \ln(3) - \frac{80}{81} + \frac{38}{27}x - \frac{14}{27}x^2 + \frac{8}{81}x^3$ will never differ more than 0.015625