Section 8.9: Applications of Taylor Polynomials

Practice HW from Stewart Textbook (not to hand in)

$$
\text { p. } 628 \text { \# 1-21 odd }
$$

Taylor Polynomials

In this section, we use Taylor polynomials to approximate a given function $f(x)$ near a point $x=a$.

Definition: The $n^{\text {th }}$ Taylor polynomial $T_{n}(x)$ at a function $f(x)$ at $x=a$ is given by
$T_{n(}(x)=f(a)+f^{\prime}(a) \frac{f^{\prime}(a)}{1!}(x-a) \frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{n}(a)}{n!}(x-a)^{n}$
where $T_{n}(a)=f(a), \quad T_{n}^{\prime}(a)=f^{\prime}(a), \quad T_{n}^{\prime \prime}(a)=f^{\prime \prime}(a), \ldots, \quad T_{n}^{n}(a)=f^{n}(a)$.

Example 1: Find the Taylor (Maclaurin) polynomial for $f(x)=e^{x}$ at $a=0$ and $n=2$ and use it to approximate $e^{0.01}$.

Solution:

Note: In general, the higher the degree of the Taylor polynomial and the closer we are to the point $x=a$ that the Taylor polynomial is centered at, the better the approximation

Example 2: Find the Taylor (Maclaurin) polynomial for $f(x)=e^{x}$ at $a=0$ and $n=4$ and use it to approximate $e^{0.01}$.

Solution:

The following table illustrates the accuracy of the Taylor polynomials $T_{2}(x)=1+x+\frac{1}{2} x^{2}$ and $T_{4}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}$ to $f(x)=e^{x}$ near $x=0$.

x	-8	-1	-0.1	-0.01	0	0.01	0.1	1	5
$f(x)=e^{x}$	0.0003	0.367879	.904837	0.990049	1	1.0100501	1.105170	2.7188281	148.413
$T_{2}(x)$	25	0.5	0.905	0.99005	1	1.01005	1.105	2.5	18.5
$T_{4}(x)$	110.3	0.375	0.904837	0.990049	1	1.0100501	1.105170	2.7083333	65.375

As can be seen, the closer the value of x is nearer to zero, the better the approximation the Taylor polynomials provided for the function. This is further illustrated by the following graphs:

Note: The following Maple commands can be used to find the $2^{\text {nd }}$ and $4^{\text {th }}$ degree Taylor polynomials for $f(x)=e^{x}$ near $x=0$.
> with(Student[Calculus1]):
> TaylorApproximation(exp(x), $x=0$, order $=2$);

$$
1+x+\frac{1}{2} x^{2}
$$

> TaylorApproximation(exp(x), $x=0$, order $=4)$;

$$
1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}
$$

Example 3: Find the Taylor polynomial $T_{n}(x)$ for the function $f(x)=\sqrt{3+x^{2}}$ at $a=1$ for $n=3$.

Solution:

Error of Approximation

Can be used to determine how close a Taylor polynomial $T_{n}(x)$ is to $f(x)$.

We define the function $R_{n}(x)$, which represents the error between $f(x)$ and $T_{n}(x)$, as follows:

$$
R_{n}(x)=f(x)-T_{n}(x)
$$

Estimation of Error - Taylor's Inequality

If $\left|f^{n+1}(x)\right| \leq M$ for $|x-a| \leq d(-d+a \leq x \leq d+a)$, then

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \text { for }|x-a| \leq d
$$

Note: It is many times useful to use Maple to help determine the error of approximation.

Example 4: For $f(x)=\ln (1+2 x)$, use Maple to
a. Approximate f by a Taylor polynomial of degree $n=3$ centered at $a=1$.
b. Use Taylor's inequality to estimate the accuracy of the approximation $f(x) \approx T_{n}(x) \mathrm{f}$ for $0.5 \leq x \leq 1.5$.

Solution (Part a): The following commands will compute and store the $3^{\text {rd }}$ degree Taylor polynomial centered at $x=a=1$.

```
> with(Student[Calculus1]):
> T3 := TaylorApproximation(ln(1+2*x), x = 1, order = 3);
    T3:= ln(3)+\frac{38x}{27}-\frac{80}{81}-\frac{14\mp@subsup{x}{}{2}}{27}+\frac{8\mp@subsup{x}{}{3}}{81}
```

Thus,

$$
T_{3}(x)=\ln (3)-\frac{80}{81}+\frac{38}{27} x-\frac{14}{27} x^{2}+\frac{8}{81} x^{3}
$$

Solution (Part b): It is important to note that the inequality $|x-1| \leq 0.5$ by definition says that $-0.5 \leq x-1 \leq 0.5$. Adding 1 to all sides of the inequality gives $0.5 \leq x \leq 1.5$, which is the given interval. The Taylor inequality estimate says that if

$$
\left|f^{n+1}(x)\right| \leq M \text {, then }\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \text { for }|x-a| \leq d
$$

For this problem, $n=3, a=1$, and $d=0.5$. Thus, the equality becomes

$$
\left|R_{3}(x)\right| \leq \frac{M}{4!}|x-1|^{4} \text { for }|x-1| \leq 0.5
$$

This inequality is guaranteed to be true if $\left|f^{n+1}(x)\right| \leq M$, or $\left|f^{4}(x)\right| \leq M$ for $0.5 \leq x \leq 1.5$. Our goal is to find an upper bound for $\left|f^{4}(x)\right|$ on the interval $0.5 \leq x \leq 1.5$, that is, a value for which $\left|f^{4}(x)\right|$ is guaranteed to be smaller than for the entire interval. We can use a graph of $\left|f^{4}(x)\right|$ to find M. The following Maple commands can be used.

$$
\begin{aligned}
& >\mathrm{f}:=\ln (1+2 * \mathrm{x}) ; \quad f:=\ln (1+2 x) \\
& >\mathrm{f} 4:=\operatorname{abs}(\operatorname{diff}(\mathrm{f}, \mathrm{x} \$ 4)) ; \\
& f 4:=\frac{96}{|1+2 x|^{4}} \\
& >\text { plot }(\mathrm{f} 4, \mathrm{x}=0.5 . .1 .5, \text { view }=[-1 . .2,-1 . .10]) ;
\end{aligned}
$$

As, the graph shows, the fourth order derivative $\left|f^{4}(x)\right|$ has a maximum of 6 on the interval $0.5 \leq x \leq 1.5$ and this maximum occurs at $x=0.5$. Thus, $M=6$ and $\left|f^{4}(x)\right| \leq 6$ when $x=0.5$. Hence,
$\left|R_{3}(x)\right| \leq \frac{M}{4!}|x-1|^{4}=\frac{6}{24}|0.5-1|^{4}=\frac{1}{4}|-0.5|^{4}=(0.25)(0.5)^{4}=(0.25)(0.0625)=0.015625$
Thus, this says for any value of x in the interval $0.5 \leq x \leq 1.5$, the function $f(x)=\ln (1+2 x)$ and the Taylor polynomial $T_{3}(x)=\ln (3)-\frac{80}{81}+\frac{38}{27} x-\frac{14}{27} x^{2}+\frac{8}{81} x^{3}$ will never differ more than 0.015625

