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Section 8.5: Power Series 
 

Practice HW from Stewart Textbook (not to hand in) 
p. 598 # 3-17 odd 

 
Power Series 
 
Definition: A power series is an infinite series of the form 
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or more generally, a power series centered at a constant a is given by  
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Recall that n factorial is represented by n! and is given by 
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Examples of Power Series 
 
1.  We will soon learn that  
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 is a power series centered at 0 that can be used to represent xe  exactly. 
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Convergence of a Power Series 
 
For a power series centered at a, precisely one of the following is true. 
1.  The series converges only at a. 
2. There exist a real number R > 0 such that the series converges absolutely for 

Rax <−  and diverges for Rax >− . 
3. The series converges for all real numbers. 
 
Notes 
1.  R is called the radius of convergence. The set of all values of x for which the power 

series converges is called the interval of convergence. 
2. Rax <−  represents the values of x whose distance from a is smaller than the radius of 

convergence R. In interval notation, means RaxR <−<−  or aRxaR +<<+− . 
3. A useful property for the absolute value is that for any two numbers a and b, 

|| |||| baab = . 
4. To determine the initial interval radius of convergence, we use the ratio test (see 

below). 
5. It may be possible to extend the interval of convergence to the endpoints of the 

interval found by the ratio test. This involves using the series convergence tests 
studied in previous sections. 

 
 

Ratio Test 
 
Given an infinite series ∑ na . 
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Example 1: Determine the interval of convergence and radius of convergence for the 
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Example 2: Determine the interval of convergence and radius of convergence for the 
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Solution: 
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Example 3: Determine the interval of convergence and radius of convergence for the 
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Example 4: Determine the interval of convergence and radius of convergence for the 
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Solution: To set up the ratio test, we start by letting n
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determine the interval of convergence using the ratio test as follows: 
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      (continued on next page) 
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For a power series to converge, 1 lim 1 <+

∞→ n

n
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the previous page, 1
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Since 3|2| <−x , by the definition of absolute value, 323 <−<− x . Adding 2 to each 
side of the inequality gives the interval of convergence for the series, 51 <<− x . We can 
possibly increase the size of the interval of convergence by testing the endpoints, that is, 
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We can, by the alternating series test, show that the ∑
∞

= +
−

0  )1(
 )1(

n

n

n
 series is convergent. Note 

that this is true since for 
1

1
+

=
n

an , generating terms of the sequence we see that 

1. …>>>>
5
1

4
1

3
1

2
1  

2. 0
1

1lim =
+∞→ nn

. 

 

Thus the series ∑
∞

= +

−

0 3 )1(
)2(

n
n

n

n
x  is convergent at x = -1. 

       (continued on next page) 
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For the endpoint x = 5 
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The series  
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series we will compare this series with is  
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Thus, the limit comparison test will apply. Since the series  
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x = 5. Thus the interval of convergence is     51 <≤− x  or [-1, 5)      in interval notation. 
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