Section 8.1: Sequences

Practice HW from Stewart Textbook (not to hand in)

p. 565 \# 3-33 odd

Sequences

Sequences are collection of numbers or objects that is ordered by the positive integers.
Notation: $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}$ (known as the terms of the sequence).

Example 1: Write the first five terms of the sequence $a_{n}=\frac{n}{n+1}$.

Solution:

Example 2: Write the first five terms of the sequence $a_{n}=\frac{(-1)^{n}}{3^{n}}$.

Solution:

Describing the nth term of a sequence

Involves writing a formula describing the pattern the sequence of numbers follows.

Example 3: Find a formula for the general term a_{n} of the sequence $\{3,7,11,15, \ldots\}$.

Solution:

Example 4: Find a formula for the general term a_{n} of the sequence $\left\{-\frac{1}{4}, \frac{2}{9},-\frac{3}{16}, \frac{4}{25}, \ldots\right\}$.

Solution:

Convergence of Sequences

Sequences whose behavior approaches a limiting value are said to converge to this value
Example 5: What value does the sequence $\left\{\frac{1}{2^{n}}\right\}$ appear to converge to?

Solution:

Definition: A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

which is read as a_{n} approaches L as n approaches ∞ if we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, then the sequence is convergent. Otherwise, it is divergent.

Useful Facts for Showing Convergence of Sequences

1. L Hopital's Rule for indeterminate forms $\frac{\infty}{\infty}$.
2. Absolute Value Theorem: If $\lim \left|a_{n}\right|=0$, then $\lim a_{n}=0$.
3. Using Maple to graph.

Example 6: Determine whether the sequence $a_{n}=n^{2}+n$ converges or diverges. If the sequence converges, find the limit.

Solution:

Example 7: Determine whether the sequence $a_{n}=\frac{n^{2}+1}{3 n^{2}-1}$ converges or diverges. If the sequence converges, find the limit.

Solution:

Example 8: Determine whether the sequence $a_{n}=\frac{e^{n}}{e^{2 n}-1}$ converges or diverges. If the sequence converges, find the limit.

Solution:

Example 9: Determine whether the sequence $a_{n}=\cos n \pi$ converges or diverges. If the sequence converges, find the limit.

Solution:

Example 10: Determine whether the sequence $a_{n}=\ln (2 n+1)-\ln (n)$ converges or diverges. If the sequence converges, find the limit.

Solution: Note if we compute $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \ln (2 n+1)-\ln (n)$ directly, we obtain $\infty-\infty$, which is an indeterminant form (this is not necessarily zero!). However, we can evaluate this limit by rewriting the sequence formula using some basic algebra. We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln (2 n+1)-\ln (n) & =\lim _{n \rightarrow \infty} \ln \left(\frac{2 n+1}{n}\right) & & \text { (Use } \left.\ln \text { property } \ln u-\ln v=\ln \frac{u}{v}\right) \\
& =\lim _{n \rightarrow \infty} \ln \left(\frac{2 n}{n}+\frac{1}{n}\right) & & \text { (Use property of fractions } \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \text {) } \\
& =\lim _{n \rightarrow \infty} \ln \left(2+\frac{1}{n}\right) & & \text { (Simplify) } \\
& =\ln (2+0) & & \text { (Evaluate limit, as } \left.n \rightarrow \infty, \frac{1}{n} \rightarrow 0\right) \\
& =\ln 2 & &
\end{aligned}
$$

Thus, the sequence $a_{n}=\ln (2 n+1)-\ln (n)$ converges to $\ln 2$.

Example 11: Determine whether the sequence $a_{n}=(-1)^{n} \frac{n}{n^{2}+1}$ converges or diverges. If the sequence converges, find the limit.

Solution:

Factorial

Recall that n !, read as n factorial, is defined to be $n!=n(n-1)(n-2)(n-3) \cdots 3 \cdot 2 \cdot 1$.

Note: $0!=1$.
Example 12: Compute 5!.

Solution:

Example 13: Determine whether the sequence $a_{n}=\frac{e^{n}}{n!}$ converges or diverges. If the sequence converges, find the limit.

Solution: Taking the $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{e^{n}}{n!}$ gives the indeterminant form $\frac{\infty}{\infty}$. However, using L' Hopital's rule to find the limit is not practical since taking the derivative of n ! is not trivial. However, Maple can be used to easily plot the behavior of the terms in this sequence. This can be accomplished with the following two commands:
> f := n -> exp(n)/factorial(n);

$$
f:=n \rightarrow \frac{\mathbf{e}^{n}}{n!}
$$

> plot([seq([i, f(i)], i = 1..20)], style = point, view = [-2..20, -2..10], thickness = 2, title = "Graph of sequence e^n/n!");

Graph of sequence $e^{n} n / n!$

Thus, it appears that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{e^{n}}{n!}=0$. Hence, the sequence most likely converges to 0 .

