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Section 7.5: The Logistic Equation 
 

Practice HW from Stewart Textbook (not to hand in) 
p. 542 # 1-13 odd 

 
The basic exponential growth model we studied in Section 7.4 is good for modeling 
populations that have unlimited resources over relatively short spans of time. However, 
most environments have a limit on the amount of population it can support. We present a 
better way of modeling these types of populations. In general, 
 
1.  For small populations, the rate of growth is proportional to its size (exhibits the basic  
 exponential growth model. 
2.  If the population is too large to be supported, the population decreases and the rate of  
 growth is negative. 
 
Let 
 
 t = the time a population grows 
 P or P(t) = the population after time t. 
 k = relative growth rate coefficient 

K = carrying capacity, the amount that when exceeded will result in the population    
  decreasing. 

 
Notes 

1. Note that if P is small, kP
dt
dP

≈  (the population will be assumed to assume basic 

exponential growth) 
 

2. If P > K, 0<
dt
dP  (population will decrease back towards the carrying capacity). 

 
To construct the model, we say 
 

)0 make  tosomething(

 
exp

<⋅=
dt
dPkP
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Partgrowth
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To make 0<
dt
dP , let 

K
Psomething −= 1 . Note that if 01 and  ,1  , <−>>

K
P

K
PKP . 

 
Using this, we  have the  logistic population model. 
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This differential equation can be solved using separation of variables, where partial 
fractions are used in the integration process (see pp. 538-539 of Stewart textbook). Doing 
this gives the solution  
 

0

0  , 
1

)(
P

PK
A

Ae
KtP kt

−
=

+
=

−
, 

 
where 0P  = the initial population at time t = 0, that is 0)0( PP = . Summarizing, we have 
the following. 
 

Logistic Population Growth Model 
 
The initial value problem for logistic population growth, 
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has solution 
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Here, 
 
 t = the time the population grows 
 P or P(t) = the population after time t. 
 k = relative growth rate coefficient 

K = carrying capacity, the amount that when exceeded will result in the population    
  decreasing. 

0P  = initial population, or the population we start with at time t = 0, that is, 0)0( PP = . 
 
 
Notes 
1. Solutions that can be useful in analyzing the behavior of population models are the  

 equilibrium solutions, which are constant solutions of the form P = K  where 0=
dt
dP . 

 For the logistic population model, 01 =⎟
⎠
⎞

⎜
⎝
⎛ −=

K
PkP

dt
dP  when P = 0 and P = K. 

2. Sometimes the logistic population model can be varied slightly to take into account  
 other factors such as population harvesting and extinction factors (Exercises 11 and 
 13). In these cases, as symbolic manipulator such as Maple can be useful in analyzing 
 the model predictions. 
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Example 1: Suppose a species of fish in a lake is modeled by a logistic population model 
with relative growth rate of k = 0.3 per year and carrying capacity of K = 10000.  
a.  Write the differential equation describing the logistic population model for this  
 problem.  
b. Determine the equilibrium solutions for this model. 
c. Use Maple to sketch the direction field for this model. Draw solutions for several  
 initial conditions.  
d. If 2500 fish are initially introduced into the lake, solve and find the analytic solution 

P(t) that models the number of fish in the lake after t years. Use it to estimate the 
number of fish in the lake after 5 years. Graph the solution and the direction field on 
the same graph. 

e. Continuing part d, estimate the time it will take for there to be 8000 fish in the lake. 
 
Solution:  
Part a.) 
 
 
 
 
 
 
 
 
 
 
 
 
Part b.) 
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Part c.) The following Maple commands can be used to plot the direction field. 
 
> with(DEtools): with(plots): 
> de := diff(P(t),t)=0.3*P(t)*(1 - P(t)/10000); 

 := de  = d
d
t ( )P t 0.3 ( )P t ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ − 1 1

10000 ( )P t  

> dfieldplot(de, P(t), t = 0..50, P = 0..12000, color = 
blue, arrows = MEDIUM, dirgrid = [30,30], title = "The 
Logistic Model dP/dt = 0.3*P*(1-P/10000)"); 
 

 
 
Part d.)  
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Part e.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            █ 
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Modifications of the Logistic Model 
 
The logistic population model can be altered to consider other population factors. Two 
methods of doing this can be described as follows: 
 
1.  Populations that are subject to “harvesting”. Sometimes a population can be taken  
 away or harvested at a constant rate. If the parameter c represents to rate per time  
 period of the population harvested, then the logistic model becomes 
 

c
K
PkP

dt
dP

−⎟
⎠
⎞

⎜
⎝
⎛ −= 1  

 
2. Suppose that when the population falls below a minimum population m, the  
 population becomes extinct. Then this population can be modeled by the differential 
 equation 
 

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −=

P
m

K
PkP

dt
dP 11  

 
 
Maple can be useful in helping to analyze models of these types. We consider the 
harvesting problem in the following example. 
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Example 2: Suppose a species of fish in a lake is modeled by a logistic population model 
with relative growth rate of k = 0.3 per year and carrying capacity of K = 10000. In 
addition, suppose 400 fish are harvested from the lake each year. 
a.  Write the differential equation describing the population model for this problem.  
b. Use Maple to determine the equilibrium solutions for this model. 
c. Use Maple to sketch the direction field for this model. Draw solutions for several  
 initial conditions. 
d. If 2500 fish are initially introduced into the lake, solve and find the analytic solution 

P(t) that models the number of fish in the lake after t years. Use it to estimate the 
number of fish in the lake after 5 years. 

e. Continuing part d, estimate the time it will take for there to be 8000 fish in the lake. 
 
Solution: Part a). We use the harvesting model equation 
 

c
K
PkP

dt
dP

−⎟
⎠
⎞

⎜
⎝
⎛ −= 1  

 
Substituting the relative growth rate coefficient of k = 0.3, carrying capacity K = 10000, 
amount to be harvested c = 400 into this differential equation, we obtain the model 
 
 

400
10000

1 3.0 −⎟
⎠
⎞

⎜
⎝
⎛ −=

PP
dt
dP  

 
 

Part b.) The equilibrium solutions occur for population values where 0=
dt
dP . The 

following Maple commands will find these values: 
 
> de := diff(P(t),t)=0.3*P(t)*(1 - P(t)/10000) - 400; 
 

 := de  = d
d
t ( )P t  − 0.3 ( )P t ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ − 1 1

10000 ( )P t 400  

> solve(rhs(de) = 0, P(t)); 
,1584.349745 8415.650255  

 
Thus, the equilibrium solutions occur when there are approximately  P = 1584 fish and 
P = 8416 fish. 
 

(Continued on next page)
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Part c.)  The following Maple commands can be used to plot the direction field (we will 
plot the solutions in class). 
 
 
> with(DEtools): with(plots): 
> de := diff(P(t),t)=0.3*P(t)*(1 - P(t)/10000) - 400; 

 := de  = d
d
t ( )P t  − 0.3 ( )P t ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ − 1

1
10000 ( )P t 400  

> dfieldplot(de, P(t), t = 0..50, P = 0..12000, color = 
blue, arrows = MEDIUM, dirgrid = [30,30], title = "The 
Logistic Model dP/dt = 0.3*P*(1-P/10000) - 400"); 
 

 
 
          
         (Continued on next page) 
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Part d. ) The following Maple commands will find the analytic solution and find the 
approximate number of fish in the lake after 5 years. 
 
> de := diff(P(t),t)=0.3*P(t)*(1 - P(t)/10000) - 400; 

 := de  = d
d
t ( )P t  − 0.3 ( )P t ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ − 1 1

10000 ( )P t 400  

> sol := dsolve({de, P(0) = 2500}, P(t)); 

 := sol  = ( )P t  + 5000
1000

3 105 ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟tanh  + 

105 t
100

1
2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ln

−  + 15 2 105
 + 15 2 105

 

> evalf(subs(t = 5, sol)); 
 = ( )P 5 3642.746955  

The next sequence of commands demonstrate how to plot the direction field and solution 
on the same graph. 
 
> with(DEtools): with(plots): 
> p1 := dfieldplot(de, P(t), t = 0..50, P = 0..12000, color 
= blue, arrows = MEDIUM, dirgrid = [35,35], title = "The 
Logistic Model dP/dt = 0.3*P*(1-P/10000) - 400"): 
> p2 := plot(rhs(sol), t = 0..50, color = red, thickness = 
2): 
> display([p1, p2]); 
 

 



 10

 
Part e). Taking the solution stored in the variable sol given above in part d, the next 
command demonstrates how to find the time the population will be 8000. 
 
> sol; 

 = ( )P t  + 5000 1000
3 105 ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟tanh  + 

105 t
100

1
2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ln −  + 15 2 105

 + 15 2 105
 

> solve(rhs(sol) = 8000, t); 
10
21

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ln −  + 15 2 105

 + 15 2 105
2 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟arctanh 3 105

35 105  

> evalf(%); 
22.45728413  

Thus, it takes approximately t = 22.5 years for the population to reach 8000. 
 
 
 
             █ 


