Section 7.2: Direction Fields and Euler's Methods

Practice HW from Stewart Textbook (not to hand in)
p. 511 \# 1-13, 19-23 odd

For a given differential equation, we want to look at ways to find its solution. In this chapter, we will examine 3 techniques for determining the behavior for the solution. These techniques will involve looking at the solutions graphically, numerically, and analytically.

Examining Solutions Graphically - Direction Fields

Recall from Calculus I that for a function $y(x), y^{\prime}=\frac{d y}{d x}$ gives the slope of the tangent line at a particular point (x, y) on the graph of $y(x)$. Suppose we consider a first order differential equations of the form

$$
y^{\prime}=f(x, y)
$$

For a solution y of this differential equation, y^{\prime} evaluated at the point $\left(x_{1}, y_{1}\right)$ represents the slope of the tangent line to the graph of $y(x)$ at this point.

Even though we do not know the formula for the solution $y(x)$, having the differential equation $y^{\prime}=f(x, y)$ gives a convenient way for calculating the tangent line slopes at various points. If we obtain these slopes for many points, we can get a good general idea of how the solution is behaving.

Direction Fields (sometimes called slope fields) involves a method for determining the behavior of various solutions on the $x-y$ plane by calculating the tangent line slopes at various points.

Example 1: Sketch the direction field for the differential equation $y^{\prime}=x^{2}-y$. Use the result to sketch the graph of the solution with initial condition $y(0)=1$.

Solution: In this problem, we plot points for the four quadrant regions and the x and y axis (we will fill in the first quadrant chart in class).

$\mathbf{1}^{\text {st }}$ Quadrant		
x	y	$y^{\prime}=x^{2}-y$
1	1	
2	1	
3	1	
1	2	
2	2	
3	2	
1	3	
2	3	
3	3	

$\mathbf{2}^{\text {nd }}$		
	Quadrant	
x	y	$y^{\prime}=x^{2}-y$
-3	1	8
-2	1	3
-1	1	0
-3	2	7
-2	2	2
-1	2	-1
-3	3	6
-2	3	1
-1	3	-2

$\mathbf{3}^{\text {rd }}$ Quadrant		
x	y	$y^{\prime}=x^{2}-y$
-3	-1	10
-2	-1	5
-1	-1	2
-3	-2	11
-2	-2	6
-1	-2	3
-3	-3	12
-2	-3	7
-1	-3	4

$\mathbf{4}^{\text {th }}$ Quadrant		
x	y	$y^{\prime}=x^{2}-y$
1	-1	2
2	-1	5
3	-1	10
1	-2	3
2	-2	6
3	-2	11
1	-3	4
2	-3	7
3	-3	12

x-axis			y-axis		
x	y	$y^{\prime}=x^{2}-y$	x	y	$y^{\prime}=x^{2}-y$
-3	0	9	0	-3	3
-2	0	4	0	-2	2
-1	0	1	0	-1	1
0	0	0	0	0	0
1	0	1	0	1	-1
2	0	4	0	2	-2
3	0	9	0	3	3

We can sketch the slopes on the following graph (will do in class):

Obviously, as can be seen by the last example, sketching direction fields by hand can be a very tedious task. However, Maple can sketch a direction field quickly. For the differential equation $y^{\prime}=x^{2}-y$ given in Example 1, the following commands in Maple can be used to sketch the direction field:

```
> with(DEtools): with(plots):
Warning, the name changecoords has been redefined
> de := diff(y(x),x)=x^2-y(x);
\[
d e:=\frac{d}{d x} y(x)=x^{2}-y(x)
\]
> dfieldplot(de, \(y(x), x=-10 . .10, y=-30 . .30, ~ c o l o r=b l a c k\), arrows = MEDIUM, color = blue);
```


Notes

1. The direction fields for differential equations of the form $y^{\prime}=f(x)$, where the right is strictly a function of x have the same slope fields for points with the same x coordinate.

Example: Plot of $y^{\prime}=t^{2}+\cos (t)$
Direction Field Plot of $y^{\prime}=x^{\wedge} 2+\cos (t)$

2. 1The direction fields for differential equations of the form $y^{\prime}=f(y)$, where the right is strictly a function of y have the same slope fields for points with the same y coordinate. A differential equation is strictly a function of the dependent variable y is known as an autonomous equation.

Example: Plot of $y^{\prime}=(2-y)$

$$
\text { Direction Field Plot of } y^{\prime}=2-y
$$

3. A constant solution of the form $y=K$ of an autonomous where the direction field slopes are zero, that is, where $y^{\prime}=0$ and the solution y neither increases or decreases, is known as an equilibrium solution.

Example: $y^{\prime}=(2-y)$ the equilibrium solution is $y=2$.

Example 2: Given the direction field plot of the differential equation $y^{\prime}=y\left(1-y^{2} / 9\right)$.

$$
\text { Direction Field Plot of } y^{\prime}=y\left(1-y^{\wedge} 2 / 9\right)
$$

a. Sketch the graphs of solutions that satisfy the given initial conditions:
i. $y(0)=1$
iii. $y(0)=-2$
ii. $y(0)=3$
b. Find all equilibrium solutions.

Solution:

Finding Solutions Numerically - Euler's Method

A common way to examine the solution of a differential equations is to approximate it numerically. One of the more simpler methods for doing this involves Euler's method.

Consider the initial value problem

$$
y^{\prime}=F(x, y), y\left(x_{0}\right)=y_{0} .
$$

over the interval $x_{0}=a \leq x \leq b$. Suppose we want to find an approximation to the solution $y(x)$ given by the following graph:

Starting at the point $\left(x_{0}, y_{0}\right)$ specified by the initial condition $y\left(x_{0}\right)=y_{0}$, we want to approximate to solution at equally spaced points beyond x_{0} on the x axis. Let h (known as the step size) be the space between the points on the x-axis. Then $x_{1}=x_{0}+h$, $x_{2}=x_{1}+h, x_{3}=x_{2}+h$, etc. Consider the tangent line at the point (x_{0}, y_{0}) that passes through the point $\left(x_{1}, y_{1}\right)$. Since the derivative is used to calculate the slope of the tangent line, it can be seen that

Slope of the tangent line
to $y(x)$ at $\left(x_{0}, y_{0}\right)=\left.y^{\prime}\right|_{\left(x_{0}, y_{0}\right)}=F\left(x_{0}, y_{0}\right)$

Hence,

$$
\begin{aligned}
\begin{aligned}
\text { Slope through } \\
\left(x_{0}, y_{0}\right) \text { and }\left(x_{1}, y_{1}\right)
\end{aligned} & =\text { Slope at tangent line at }\left(x_{0}, y_{0}\right) \\
\frac{y_{1}-y_{0}}{x_{1}-x_{0}} & =F\left(x_{0}, y_{0}\right) \\
y_{1}-y_{0} & =\left(x_{1}-x_{0}\right) F\left(x_{0}, y_{0}\right) \\
y_{1}-y_{0} & =h F\left(x_{0}, y_{0}\right) \\
y_{1} & =y_{0}+h F\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Now, consider the line through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

$$
\begin{aligned}
\begin{aligned}
\text { Slope through } \\
\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right)
\end{aligned} & \approx \text { Slope at tangent line at }\left(x_{1}, y_{1}\right)=F\left(x_{1}, y_{1}\right) \\
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =F\left(x_{1}, y_{1}\right) \\
y_{2} & =y_{1}+h F\left(x_{1}, y_{1}\right)
\end{aligned}
$$

In general,

$$
y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)
$$

Summarizing,

Euler's Method

Given the initial value problem

$$
y^{\prime}=F(x, y), y\left(x_{0}\right)=y_{0}
$$

we calculate $\left(x_{n}, y_{n}\right)$ from $\left(x_{n-1}, y_{n-1}\right)$ by computing

$$
\begin{gathered}
x_{n}=x_{n-1}+h \\
y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)
\end{gathered}
$$

where h is the step size between endpoints on the x-axis.

Example 3: Use Euler's Method with step size of 0.5 to estimate $y(2)$, where $y(x)$ is the solution to the initial value problem $y^{\prime}=2 x-3 y, y(0)=4$. Sketch the graph of the iterates used in find the estimate.

Solution:

Notes

1. Using techniques that can studied in a differential equations course, it can be shown that the exact solution to the initial value problem $y^{\prime}=2 x-3 y, y(0)=4$ given in Example 3 is

$$
y(x)=\frac{38}{9} e^{-3 x}+\frac{2}{3} x-\frac{2}{9}
$$

The approximation to $y(2)$ (what y is when $x=2$) was $y_{4}=1.375$. The exact value is $y(2)=\frac{38}{9} e^{-3(2)}+\frac{2}{3}(2)-\frac{2}{9}=\frac{38}{9} e^{-6}+\frac{4}{3}-\frac{2}{9} \approx 1.1215769$. Thus the error between the approximation and the exact value is

$$
\left|y(2)-y_{4}\right|=|1.1215769-1.375| \approx|-0.253423|=0.253423 .
$$

2. By decreasing the step size h, the accuracy of the approximation in most cases will be better, with a tradeoff in more work needed to achieve the approximations. For example, the chart below shows the approximations generated when the step size for Example 3 is cut in half to $h=0.25$.

$x_{n}=x_{n-1}+h$ $=x_{n-1}+0.25$	$y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)$ $=y_{n-1}+0.25\left(2 x_{n-1}-3 y_{n-1}\right)$	Exact Value 38 $x_{0}=0$
$y_{0}=4$ $=x_{0}+h$ $=0+0.25$ $=0.25$	$y_{1}=y_{0}+0.25\left(2 x_{0}-3 y_{0}\right)$ $=4+0.25(2(0)-3(4))$ $=4+0.25(0-12)=4+(-3)=1$	$y(0)=\frac{38}{9} e^{0}+\frac{2}{3}(0)-\frac{2}{9}=\frac{36}{9}=4$
$x_{2}=0.5$	$y_{2}=0.375$	$\approx \frac{38}{9} e^{-3(0.25)}+\frac{2}{3}(-0.25)-\frac{2}{9}$
$x_{3}=0.75$	$y_{3}=0.34375$	$y(0.5) \approx 1.053216232$
$x_{4}=1$	$y_{4}=0.4609375$	$y(0.75) \approx 0.7227967261$
$x_{5}=1.25$	$y_{5}=0.6152343750$	$y(1) \approx 0.6546565109$
$x_{6}=1.5$	$y_{6}=0.7788085938$	$y(1.25) \approx 0.7104082603$
$x_{7}=1.75$	$y_{7}=0.9447021484$	$y(1.5) \approx 0.8246824299$
$x_{8}=2$	$y_{8}=1.111175537$	$y(1.75) \approx 0.9666006336$

Here, the approximation to $y(2) \approx 1.1215769542$ is $y_{8}=1.111175537$ and the the error between the approximation and the exact value is

$$
\left|y(2)-y_{8}\right| \approx|1.1215769-1.1111755| \approx|0.010401|=0.010401
$$

The following represents a graph of the curves produced by Euler's method for various values of h and the exact solution $y(x)$.

Solthion cuwe and vanious h watues lor Eulers method lor approxinating $\mathbf{y}^{\prime}=\mathbf{2 x}-\mathbf{3 y}$, $\mathbf{y}^{\prime}(\mathrm{D})=\mathbf{4}$

3. There are other numerical methods that can achieve better accuracy with less work than Euler's method. However, the underlying approach used in many of these methods stem from Euler's approach.

