Section 7.1: Modeling with Differential Equations

Practice HW from Stewart Textbook (not to hand in)
p. 503 \# 1-7 odd

Differential Equations

Differential Equations are equations that contain an unknown function and one or more of its derivatives. Many mathematical models used to describe real-world problems rely on the use of differential equations (see examples on pp. 501-503).

Most of the differential equations we will study in this chapter involve the first order derivative and are of the form

$$
y^{\prime}=F(x, y)
$$

Our goal will be to find a function $y=f(x)$ that satisfies this equation. The following two examples illustrate how this can be done for a basic differential equation and introduce some basic terminology used when describing differential equations.

Example 1: Find the general solution of the differential equation $y^{\prime}=3 x^{2}$

Solution:

The general solution (or family of solutions) has the form $y=f(x)+C$, where C is an arbitrary constant. When a particular value concerning the solution (known as an initial condition) of the form $y\left(x_{0}\right)=y_{0}$ (read as $y=y_{0}$ when $x=x_{0}$) is known, a particular solution, where a particular value of C is determined, can be found. The next example illustrates this.

Example 2: Find the particular solution of the differential equation $y^{\prime}=3 x^{2}, y(0)=1$.

Solution:

To check whether a given function is a solution of a differential equation, we find the necessary derivatives in the given equation and substitute. If the same quantity can be found on both sides of the equation, then the function is a solution.

Example 3: Determine if the following functions are solutions to the differential equation $y^{\prime \prime}-2 y^{\prime}+8 y=0$.
a. $y=e^{x}$
b. $y=2 e^{4 x}$

Solution:

Example 4: Verify that $y=\sin x \cos x-\cos x$ is a solution of the initial value problem $y^{\prime}+(\tan x) y=\cos ^{2} x, y(0)=-1$, on the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

Solution:

Example 5: For what value of r does the function $y=e^{r x}$ satisfy the differential equation $y^{\prime}+y=0$?

Solution: For the function $y=e^{r x}$ to be a solution, we must, after computing the necessary derivative, obtain the same quantities on both sides of the equation after substitution. For $y^{\prime}+y=0$, we must compute, using the chain rule applied to the exponential function of base $e, y^{\prime}=r e^{r x}$. Hence, we obtain

$$
\begin{array}{ll}
y^{\prime}+y=0 \\
r e^{r x}+e^{r x}=0 & \\
e^{r x}(r+1)=0 & \text { (Substitute for } \left.y^{\prime} \text { and } y\right) \\
\frac{e^{r x}(r+1)}{e^{r x}}=\frac{0}{e^{r x}} & \text { (Dividor } \left.e^{r x}\right) \\
r-1=0 & \text { (Simplify) } \\
r=-1 & \text { (Solve) }
\end{array}
$$

Thus, $r=-1$ for $y=e^{r x}$ to be a solution.

