Basic Maple Tutorial

The purpose of this document is to introduce some basic Maple commands, syntax, and programming concepts for Maple V Release 9.5.

1 Some Basic Maple Commands

After you log on to your terminal and access Maple, you will get a window containing a "prompt" > where you can immediately begin entering Maple commands. If you wanted to multiply the numbers 247 and 3756 , you would enter > 247*3756;

927732

NOTE: Every Maple V command must end with either a semicolon or a colon. If a command is ended with a colon then the calculation will be made but no output will be printed. When a semicolon is used the calculation will be made and the result will be printed.

If a colon were used on the previous command, the result would look like the following:
$>247 * 3756$:
If the semicolon or colon is omitted from a command, the command will not execute. Maple will respond as follows:
$>247 * 3756$

Warning, premature end of input
However, because Maple allows full screen editing, you can go back to the line where the problem occurred and correct it.

2 Arithmetic

The basic arithmetic operations of addition, multiplication, division, and exponentiation are recognized in Maple V by the following symbols:

$$
\begin{array}{lc}
+ \text { and }- & \text { add and subtract } \\
* \text { and } / & \text { multiply and divide } \\
\wedge \text { or } * * & \text { raise to a power }
\end{array}
$$

You can easily add two numbers
> 253+7775;
or add two fractions.
$>25 / 27+3 / 51$;

$$
\frac{452}{459}
$$

Operations can be performed on previous results by using the percent symbol \%. The next calculation multiplies the previous result by 23 .
$>23 * \%$;

$$
\frac{10396}{459}
$$

Double percent marks refers to the next to last result.

```
> 23 * %%;
```

$$
\frac{10396}{459}
$$

You can raise a number to a power as follows.

$$
>\quad 3^{\wedge} 7 ;
$$

> $3 * * 7$;

Like other computer algebra systems, Maple uses exact arithmetic. For example, if you divide two integers Maple V will return the exact answer.
$>3235 / 7478$;

$$
\frac{3235}{7178}
$$

The Maple function evalf will give the following decimal representation.

```
> evalf(%);
```

$$
0.4326023001
$$

3 Defining Variables and Functions

You can assign a value or a function to a variable by using the colon-equal notation " $:=$ "

$$
>y:=5 ; \quad y:=5
$$

This means that the variable " y " has been assigned the value 5 and will have this value throughout the session until it is assigned another value or its value is unassigned. To display the current contents of a variable, we enter the variable's name followed by a semicolon.

```
> y;
```

$$
5
$$

We can perform basic calculations with the unassigned variable such as

```
> 4*y + 5;
```

Assigning a variable to itself enclosed in single quotes unassigns the variable.

$$
\begin{aligned}
& >y:=~ ' y ' ; ~ \\
& y:=y
\end{aligned}
$$

> y;

$$
y
$$

There are two ways to define and work with functions. One way is to define the function as an expression. For the function $\mathrm{f}(x)=x^{2}$, this would be done by entering

$$
\begin{aligned}
& >\mathrm{f}:=\mathrm{x}^{\wedge} 2 ; \\
& \qquad f:=x^{2}
\end{aligned}
$$

This definition can be checked by entering:
> f;

$$
x^{2}
$$

The Maple V procedure subs allows expressions such as this to be evaluated.

```
> subs(x=5,f);
```

The problem with defining functions as expressions is that standard functional notation, such as $f(5)$, is not understood by Maple V and results in nonsense.

```
> f(x);
    x}(x\mp@subsup{)}{}{2
> f(5);
\[
x(5)^{2}
\]
```

If you wish to use standard functional notation, you must enter the function using the minus-greater than notation "->", made by typing the "minus sign" followed by the "greater than" sign. For example:

```
\(>\mathrm{f}:=\mathrm{x}->\mathrm{x}^{\wedge} 2\);
    \(f:=x \rightarrow x^{2}\)
\(>\mathrm{f}(\mathrm{x})\);
    \(x^{2}\)
\(>\mathrm{f}(5)\);
```


4 Case Sensitivity

Maple is case sensitive - it distinguishes between upper and lower case characters. If you want to factor the polynomial $x^{2}+2 x+3$, you would enter
$>$ factor $\left(\mathrm{x}^{\wedge} 2-2 * \mathrm{x}-3\right)$;

$$
(x+1)(x-3)
$$

However, the following command results in nonsense.
$>$ FACTOR $\left(x^{\wedge} 2-2 * x-3\right)$;

$$
\operatorname{FACTOR}\left(x^{2}-2 x-3\right)
$$

Even one letter not being the correct case returns nonsense.
$>$ Factor $\left(x^{\wedge} 2-2 * x-3\right)$;

$$
\operatorname{Factor}\left(x^{2}-2 x-3\right)
$$

5 Algebra

Here are some of the important Maple V algebra commands:

Maple Command	What it does
expand	Expands expressions
simplify	Simplifies expressions
factor	Factors expressions
solve	solves equations

Some examples of these commands follow:

```
> expand( ( }\mp@subsup{\textrm{x}}{}{\wedge}2+1) * (x + 1) * (x + 3) ); 
    x}+4\mp@subsup{x}{}{3}+4\mp@subsup{x}{}{2}+4x+
    > factor(%);
    (x}\mp@subsup{x}{}{2}+1)(x+1)(x+3
> sol := solve( x^3 - 9*x^2 + 20*x = 0, x);
    sol := 0, 5,4
```

The last equation has 3 roots, and we can pick a particular one by entering
> sol[1];
or
$>$ sol[3];

6 Graphing

Maple has the ability the graph functions and equations. The plot command is the basic command used for plotting graphs. To demonstrate, suppose we enter the function

```
> f := x^2;
```

$$
f:=x^{2}
$$

The following command will graph this function (note the quotes around the sentence in the title option).

```
> plot(f, x = -3..3, y = -5..10, title = "Graph of y = x^2");
```

Figure 1: Maple graph of $y=x^{2}$

In the previous statement, the first parameter is the function that will be graphed. The second and third parameters are the ranges on the x and y axis over which we want our graph to be plotted.

Maple has the ability to graph multiple graphs. Suppose we enter the function
$>\mathrm{g}:=\mathrm{x}^{\wedge} 3$;

$$
g:=x^{3}
$$

The following commands set up and store the plots for these graphs in the variables p 1 and p 2 . An important fact to remember is to end these commands with a colon :. If you end the command with a semicolon, all the data points generated to plot the graph will be displayed.

```
> p1 := plot(f, x = -3..3, y = -9..9, color = blue):
> p2 := plot(g, x = -3..3, y = -9..9, color = green):
```

Using the display command, we can graph both functions. The display is in a package of routines called plots, which we read into the session by entering
> with(plots);
Warning, the name changecoords has been redefined
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, display3d, fieldplot, fieldplot3d, gradplot, gradplot3d, graphplot3d, implicitplot, implicitplot3d, inequal, interactive, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, replot, rootlocus, semilogplot, setoptions, setoptions3d, spacecurve, sparsematrixplot, sphereplot, surfdata, textplot, textplot3d, tubeplot]
This command now plots both graphs on the same axes.
$>$ display([p1, p2], title $=$ "Graphs of $y=x \wedge 2$ and $y=x \wedge 3 ") ;$

Figure 2: Maple graphs of $y=x^{2}$ and $y=x^{3}$

7 Help File

You can obtain the help file regarding most Maple functions and statements by entering ? name where name is the function or statement you desire help on. To see help on factor, you can enter:
$>$? factor
Help can also be obtain using the help option on the toolbar.

