# ITEC 198 - Prolog Programming

Dr. Maung M. Htay

Department of Information Technology

1/10/2005

#### Text

Prolog Programming for Artificial Intelligence

by Ivan Bratko

Third Edition, Addison Wesley

#### References

 Artificial Intelligence by George F Luger, Fourth Edition, Addison-Wesley

 Prolog Help/References http://www.geocities.com/saviranid/

 Roman Barták, 1997 page http://ktiml.mff.cuni.cz/~bartak/prolog.old/intro.html

# What is Prolog?

Programming in Logic

- Developed in early 1970, by Robert Kowalski, Maarteen van Emden, and David D.H. Warren at Edinburgh, U.K., Alain Colmerauer at Marseilles
- For symbolic, non-numeric computation
- Suited for solving problems that involve objects and relations between objects

# Language Design

centered around a small set of basic mechanisms

 including pattern matching, tree-based data structuring and automatic backtracking

## Chapter 1: Introduction to Prolog

- Defining relations by facts
- Defining relations by rules
- Recursive rules
- How Prolog answers questions

Declarative and procedural meaning of programs

# 1.1 Defining relations by facts

 The fact that "Tom is a parent of Bob" can be written in Prolog as:

parent(tom,bob).

parent is the relation

tom and bob are its arguments

# A Family Tree



## Prolog Program for the previous family tree

parent(pam,bob).
parent(tom,bob).
parent(tom,liz).
parent(bob,pat).
parent(bob,ann).
parent(pat,jim).

### Clauses

A clause declares one fact about a relation

For example,

 parent(tom,bob) is a particular instance of the parent relation

- an instance is also called a relationship
- a relation is defined as the set of all its instances

#### **Question to Prolog**

For example,

Is Bob a parent of Pat?

In Prolog,

?- parent(bob,pat).

Prolog will answer:



### More questions

A further query can be:

?- parent(liz,pat).

Prolog answers:



## More questions continue ----

Who is Liz's parent?

?- parent(X,liz).

So the answer is:



### More questions continue ----

Who are Bob's children??- parent(bob,X).

The first answer is: • X = ann

The another answer follows:X = pat

Broader Questions --

Who is a parent of whom?

In other words,

Find X and Y such that X is a parent of Y.

In Prolog,



## Broader Questions Continue ---

The answers are output as:

X = pam
 Y = bob;

X = tom
 Y = bob;

X = tom
Y = liz;

# **Composed Query in Prolog**

#### Who is a grandparent of Jim?



## Composed Query in Prolog Continue --

To find a grandparent, we need two steps:

Who is a parent of jim? Assume that there is some Y.

Who is a parent of Y? Assume that there is some X.

In Prolog,

?- parent(Y, jim), parent(X,Y).

## Composed Query in Prolog Continue --

Who are Tom's grandchildren?

?- parent(tom,X), parent(X,Y).

Do Ann and Pat have a common parent?

?- parent(X,ann), parent(X,pat).

#### **Important Points**

- Easy to define a relation, by stating the n-tuples of objects that satisfy the relation such as parent
- Easy to query the Prolog system about relations defined in the program
- A Prolog program consists of clauses. Each clause terminates with a full stop
- Arguments of relations can be concrete objects, or constants (such as tom and ann), or general objects such as X and Y

## Important Points Continue ---

- Concrete objects or constants are called atoms and general objects are called variables
- Questions to the system consist of one or more goals that are to be satisfied in the program such as: ?- parent(X,ann), parent(X,pat).
- Answer can be positive (if satisfiable) or negative (if unsatisfable)
- If several answers satisfy the question then Prolog will find as many of them as desired by the user

# 1.2 Defining relations by rules

#### More relations

Unary relations
female(pam).
male(tom).
male(bob).
female(liz).

Binary relations sex(pam,feminine). sex(tom,masculine). sex(bob,masculine). sex(liz,feminine).

Unary relations are simple yes / no properties of objects.

. . .

#### More Relations

#### Example

 to define a relation offspring as the inverse of the parent relation as a fact

offspring(liz, tom) is inverse of parent(tom, liz)

It is understood as

Liz is an offspring of Tom if Tom is a parent of Liz.

In general, we can say that Y is an offspring of X if X is a parent of Y.

## Relations are Defined Elegantly

 to define offspring relation using already defined parent relation

For all X and Y, Y is an offspring of X if X is a parent of Y.

In Prolog,offspring(Y,X) :- parent(X,Y).

#### What is Rules?

For all X and Y, if X is a parent of Y then Y is an offspring of X

In Prolog,

offspring(Y,X) :- parent(X,Y).
is called a Rule.

#### Difference between facts and rules

 A fact like parent(tom,liz) is something always, unconditionally true.

 On the other hand, rules specify things that are true if some condition is satisfied.

#### Rules have

body, a condition part (the right-hand side of the rule) and

head, a conclusion part (the left-hand side of the rule)

The format is

offspring(Y,X) :- parent(X,Y).

head



#### More Rules

To define mother relation by rule

For all X and Y, X is the mother of Y if X is a parent of Y and X is a female.

In Prolog,
 mother(X,Y) :- parent(X,Y), female(X).

More Rules Continue ---To define grandparent relation by rule

For all X and Y, X is a grandparent of Y if X is a parent of Z and Z is a parent of Y.

In Prolog,

- grandparent(X,Y) :
  - parent(X,Z),
    - parent(Z,Y).

### More Rules Continue ----

How do we define sister relation? For all X and Y, X is a sister of Y if both X and Y have the same parent, and X is a female. In Prolog, sister(X,Y) :parent(Z,X),parent(Z,Y),female(X).

Question to prolog Who is pat's sister?

In Prolog,?- sister(X,pat).

The answer to the previous program

♦ X = ann

♦ X = pat

 We need to modify the program since pat is a sister of herself

#### Some Important Points, So Far

- Prolog program can be added new clauses
- Clauses are of three types: facts, rules, and questions
- Facts declare things that are always, unconditionally true
- Rules declare things that are true depending on a given condition
- Questions are to be asked by the user

## More Important Points

- Clauses consists of head and body
- Body is a list of goals separated by commas
- Facts have a head and the empty body
- Questions only have the body
- Rules have the head and the non-empty body
- A variable can be substituted by another object, that is called, variable is instantiated