I. Computing Scale Scores.
 - In the data file that I have given you, I have already done the following.
 - Selected the items that will be used for our Locus of Control measure.
 Items: 2, 3, 9, 10, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34.
 - Reverse scored all of the appropriate items.
 For: Disgust Sensitivity: items 1, 6, & 18
 - Note that a higher score indicates greater sensitivity to disgusting stimuli
 Self Monitoring: items 1, 2, 3, 4, 9, 12, 14, 17, 20, 21, 22, & 23
 - Note that a higher score indicates higher levels of self monitoring.
 Locus of Control: items 2, 13, 14, 17, 18, 19, 22, 23, 24, 25, 32, 33, & 34.
 - Note that a higher score indicates an internal locus of control.
 - Calculated the Alpha Coefficient (measure of internal consistency)
 Disgust Sensitivity: .7516
 Self Monitoring: .7433
 Locus of Control: .7316
 Note: Report these alphas with the means, standard deviation, and ranges in the Measures section of the methods.
 - Using the Compute commands, I averaged the items of each scale together to form a single score for each measure.
 Note that some measures do not provide a single score, they may have multiple subscales, but all the measures we used provide a single overall score.
 For example: I computed the Locus of control score by doing the following.
 - Select Transform from the pull down menu in the data editor window
 - Transform => Compute.
 - Target Variable = locus
 - Variable Label = Internal Locus of Control Scale
 - Numeric Expression: MEAN(loc2r, loc13r, loc14r, loc15r, loc17r, loc18r, loc19r, loc22r, loc23r, loc24r, loc25r, loc32r, loc33r, loc34r, loc3,
 loc9, loc10, loc21, loc26, loc27).
 Note: This function averages all the responses on these items together for each subject. You could also just add each item and divide by the number of items [e.g., (loc2r + loc3 + loc9 + loc27)/20].
 - Click OK when you are done and the new variable is added to the end (right) of the data view spreadsheet (bottom of the variable view spreadsheet).

II Descriptive Analyses
 - These analyses should be reported in the Methods section. Some of this information should be presented in the Subjects section. The rest will be reported in the Measures section.

 A. Frequencies for Discrete Variables.
 - Analyze —> Descriptive Statistics—>Frequencies
 - Variable(s) = sex ethnic relstat classrnk.
 - Do not request any statistics or charts
- Paste to Syntax Sheet

Report =

- Participants = Total number of Participants (28). Gender = % Male, % Female; Ethnicity %’s, Class Rank %, Relationship Status %

B. Frequency for Continuous Variables
- Analyze —> Descriptive Statistics—>Frequencies
 - Variable(s) = age, gpacur, gpahs, selfmon, disgust, locus
- Request all statistics = Mean, Median, Mode, Sum, Kurtosis, Skewness, Standard Deviation, Variance, Range, Minimum, Maximum, Standard Error of the Mean.
- Request Histogram with the Normal Curve
- Paste to Syntax Sheet

Report =

- Participants = Age range (Minimum age - Maximum age), Mean Age, Mean current GPA
- Measures = For Self Monitoring, Disgust Sensitivity, and Locus of Control provide separate paragraphs describing each measure, what it asks participants to do, sample items, and how it is scored. Also, at the end of each paragraph present the $M, SD, Range$ and Alpha.

III. Demographic Analyses
- Should be reported as the first sub-section of the Results section.
- Age and GPA x Main Variables (selfmon, disgust, locus)
 - Analyze => Correlate => Bivariate
 - Variables = age, gpacur, gpahs, selfmon, disgust, locus
 - Paste.

 Note: in the syntax of the correlation you can insert the word “with” in the list of variables between gpahs and selfmon. This will break the correlations up so that you get a 3 x 3 matrix of correlations instead of a 6 x 6 list of correlations. It really makes reading the output much easier, though it will not show you the correlations between age and gpacur and gpahs, nor will it show the correlations between selfmon and disgust and locus.

- Sex x Main Variables
 - Analyze => Compare Means => Independent Samples T Test
 - Test Variables = selfmon, disgust, locus
 - Grouping Variable = sex
 - Define Groups: Use Specified Values: Group 1 = 1, Group 2 = 2.
 - Paste.

- Ethnicity, Relationship Status, & Class Rank x Main Variables
 - Analyze => Compare Means => One Way Anova
 - Dependent List = selfmon, disgust, locus
 - Factor = Ethnic
 - Post Hoc = LSD
 - Options = Descriptives
 - Paste

Once you paste the syntax for the Ethnicity Anova, just copy it and paste it and replace ethnic with relstat. Then paste it again and replace ethnic with classrnk. So you will end up with three separate One-way syntax commands.
- Note: For the demographic analyses section, only report the statistical information for analyses that are significant.

IV. Main Analyses
- Correlations between Disgust Sensitivity, Self Monitoring, and Locus of Control
 - Analyze => Correlate => Bivariate
 - Variables = selfmon, disgust, locus
 - Paste.
 - Report
 - I would like for you to report the correlations in a table and in the text of the Main analyses section. (Though normally you would do one or the other, but you need the practice)
 - The format for reporting a correlation is $r_{(df)} = .??, p < .0?$
 - if the correlation is non-significant then $r_{(df)} = .??, p < .??, ns.$
 - Remember, for each analysis, restate the hypothesis, tell how it was tested (Pearson’s Product Moment Coefficient or Pearson’s r), tell whether it was significant and report the statistic, and then tell the reader what it means with respect to people and their behaviors (see the paper writing guides for examples)

The table should look something like this (only it should be on its own page after the references)

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Disgust</th>
<th>Self</th>
<th>Locus of Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monitoring</td>
<td></td>
</tr>
<tr>
<td>Disgust</td>
<td>.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self Monitoring</td>
<td>.??*</td>
<td>.74</td>
<td></td>
</tr>
<tr>
<td>Locus of Control</td>
<td>.??**</td>
<td>.??***</td>
<td>.73</td>
</tr>
</tbody>
</table>

Note. * = $p < .05$, ** = $p < .01$, *** = $p < .001$. Alpha reliability coefficients appear on the diagonal.