Section 1.7: Logarithmic Models

A logarithmic model is written in standard form:

Translations of logarithmic models from exponential equivalent:

Part I: The graph of a logarithmic model:

Part II: Complete the table below.

Exponential Notation	Logarithmic Notation
$5^{3}=125$	$\log _{3}(81)=4$
	$\log (100)=2$
$6^{-2}=\frac{1}{36}$	
$10^{0}=1$	

Part III: Calculator Evaluation of Logarithms

1. $\log (27)$
2. $\log (1723)$
3. $\ln (7.6)$
4. $\ln (172)$

Part IV: Logarithmic Examples (Application)

1. The approximate percent (P) of adult height for males is modeled by:

$$
P=16 \log (x-12)+84
$$

where x represents years of age for males $(13<x<18)$.

What is the percent of adult height of a 14 year old male according to the model?

What is the percent of adult height for a 17 year old male according to the model?

If a 17 year old male is 6 feet tall, what will be the final adult height of the male?

