Section 1.7: Logarithmic Models

A logarithmic model is written in standard form:

Translations of logarithmic models from exponential equivalent:

Part I: The graph of a logarithmic model:

Part II: Complete the table below.

	-
Exponential Notation	Logarithmic Notation
$5^3 = 125$	
	$\log_3(81) = 4$
	$\log (100) = 2$
$6^{-2} = \frac{1}{36}$	
$10^{\circ} = 1$	

Part III: Calculator Evaluation of Logarithms

1. log (27)

2. log (1723)

3. ln (7.6)

4. ln (172)

Part IV: Logarithmic Examples (Application)

1. The approximate percent (P) of adult height for males is modeled by:

$$P = 16\log(x - 12) + 84$$

where x represents years of age for males (13 < x < 18).

What is the percent of adult height of a 14 year old male according to the model?

What is the percent of adult height for a 17 year old male according to the model?

If a 17 year old male is 6 feet tall, what will be the final adult height of the male?