3/31/11

ITEC 120

Lecture 30

Association / Aggregation

Review

* Questions?
* OO Conversion

Association / Aggregation

Objectives

» Connect objects together
— Sole source

— Community source

Association / Aggregation

‘ Relationships

* Objects Attributes <> Objects in RL

Radius
(ColorScheme

* Relationships in RL

Association / Aggregation

Jimmy’s Ball

3/31/11

Key

* Relationships store a way for information to
flow between parties (I vs 2way)

* Arrays
— This variable allows you access X sources of info
* Variables

— This variable points toY information

Association / Aggregation

Relationship type #1

‘ Aggregation

public static void main(String[] args)
{
Jimmy one = new Jimmy () ;

* This object hasa =~ one-br2a0s

public class Jimmy

{

public double height;

private Ball myBall;

Jimmy ()

{ myBall = new Ball();}

public void brag()

{ System.out.println(“My ball is “ + myBall.radius + “high”);

Has a public class Ball
{
int radius;

String colorscheme;
Association / Aggregation !

Another
example

public class SodaMachine
{
public void stock(); //Ensures 15 of each type
public void sell(); //Sell a soda
private mountainDew[] dews;
private cocacola[] colas;

private sprite[] sprites;
}
L
B
—Has15colas

Association / Aggregation

Benefits

Association / Aggregation

* Enforces physical restrictions in code

Real life
The only way to If you break the rule, the police stop you
get a soda is when you

put money in Virtual life

If you break the rule, javac stops you

—_—

3/31/11

Pr’oblem 30 machines x $2500 each == $75,000
Every 3-4 years!

e Sharing

— Expensive resource

— Multiple parties sharing
— Aggregation doesn’t cut it ’

Computer labs are expensive
| can’t have my own lab, | have to
share with other professors!

Association / Aggregation

public class ComputerLab

Association f

Shared by many) Mac[] machines;

public class Professor
{
private ComputerLab myLab;
public void setLab (ComputerLab aLab)
{
myLab = alab;
¥

public static void main(String[] args)

{
ComputerLab DH225 = new ComputerLab();
Professor[] itec = new Professor([16];
itec[0] = new Professor();

itec[l] = new Professor();

itec[0].setLab (DH225) ;

itec[1l].setLab (DH225) ;

}

Association / Aggregation

Splitting hairs

* Syntax wise
— Aggregation = Private variable w/out a setter

— Association = Private/Public variable w/ a setter/
getter

* Meaning wise
— Non-trivial
— Exclusive relationship
— Shared resource

Association / Aggregation

Case study

Has many

Has many

i Has one
Contains

Assigns

Belong to

Association / Aggregation

3/31/11

*Assume all public variables

Case study

* Student record system in Java

public class Student
{

public class Grades

{

private String Name
public String ferpaget/SetName () ;
Courses[] listOfClasses;

Student aStudent;
double num;

}

public class Course
{
String name; public class Professor
Student[] students; {
Grade[] studentGrades;
Professor prof;

} }

Association / Aggregation

String name;
Course[] courses;

Creation

Professor Ray = new Professor();
Ray.name = “Dr. Ray”;

Student[] students = new Student[35];
//Code to fill student array

Course ITEC120 = new Course();
ITEC120.prof = Ray;

ITEC120.students = students;

Grades[] grades = new Grades[35];
grades[0] = new Grades(); e Associates
grades[0] .aStudent = students[0];

grades[0] .num= 80;

//Etc...

ITEC120.studentGrades = grades;

Association / Aggregation

Usage

* For each student in ITEC 120 compute the

average grade in all of their courses
double theGrades=0.0;
for (int i=0; i<ITEC120.students.length; i++)
{
double gradeTotal=0.0;
for (int j=0; J<ITEC120.students[i].studentGrades.length; Jj++)
{
gradeTotal+= ITEC120.students[i].studentGrades[j].num;
}
gradeTotal/=ITEC120.students[i].studentGrades.length;
theGrades += gradeTotal;
}
System.out.println(theGrades/ITEC120.students.length);

Association / Aggregation

Only possible b/c of association

Case study 2

Has many

Have many

Association / Aggregation

3/31/11

Over-engineering

public double[]
public String[] names;
//Read in information
for (int i=0;

{

amount; Parallel arrays

Loop
Conditional
i<amount.length; i++)

if (amount[i] < 0)
{

amount [i] -= 50;
System.out.println(

names[i].substring(0,names[i].index0f (" V)
+ “ is overdrawn”);

) Versus l

Immense complexity / overhead for the problem

Association / Aggregation

Which tool?

Setup time: <1 min

Setup time: 5-30 mins

Association / Aggregation

Simple
problem

Big
problem

Review

* Relationships are important
* Association

* Aggregation

Association / Aggregation

