
2/3/11 

1 

ITEC 120

Lecture 11

Testing

Testing

Review

•  Questions?

•  Designing programs

Testing

Objectives

•  How to test your programs

Testing

Motivation

•  Your program prints out 103945

•  It is supposed to print out 1024

•  It contains 6 functions that mix stair stepping

and conditional execution

•  How would you fix the bug?

2/3/11 

2 

Testing

Testing

•  Think of 3 different ways to tell if your code
works?

•  Come up with one advantage and disadvantage
for each approach.

Testing

Why?

•  If you don’t test your code:

Testing

Print
debugging

int input=scan.nextInt();
System.out.println(input);
String mystery = scan.nextLine();
System.out.println(mystery)

if (mystery.length() > input)
{

 System.out.println(“In if block”);
 this.otherFunc(mystery);

}
else
{

 System.out.println(“In else block”);
 this.anotherFunc(input);

}

Peer into what your 
program is doing. 

It may surprise you! 

Testing

Tracing

•  Write down each function

•  Write down variables for each function

•  Write down values of variables as they change

2/3/11 

3 

Testing

Brute force

•  Does it work on this case?

•  Fix code until yes.

•  Repeat step 1 until exhausted or deadline

Testing

Gradual

•  Small, medium and large tests

– Read input, print out input

– Does it execute one command correctly

– Does it execute two-three commands correctly

Small 
Large 

Medium 

Testing

Unit testing

•  Instead of compile / run, come up with own
tests. Compile, run against test suites

•  Generate tests before writing code

public void testFunctions()
{

 System.out.println(“Expected distance = 1”);
 System.out.println(this.calcDistance(0,0,0,1,0,0));
 System.out.println(“Expected number=4”);
 System.out.println(this.square(2));

}

Testing

Clean room

•  Mathematical proof that code functions in a
particular manner

•  Advantage?

•  Disadvantage?

•  Where do you think it is used?

2/3/11 

4 

Testing

Question

•  Should you write the program first after
reading the problem or should you write the
tests?

•  Take a minute to decide and come up w/ 2
supporting arguments.

Testing

Test driven�
development

•  Understand problem

•  Decompose into parts

•  Design tests for each part and interactions

•  Implement part, test it

•  Integrate with other parts, test

Testing

Edge cases

Long fuse 

Short fuse 

Testing

Edge cases

•  When someone makes more than 50,000 a
year, raise their tax rate to .35

•  Test before (<50,000)

•  Test at (50,000)

•  Test after (>50,000)

Can be a 
Bigger deal 
than you 
think 

2/3/11 

5 

Testing

Code

int fuseLength = fc.getLength(); 
if (fuseLength > 15) 
{ 

 fc.fire(); 
} 
else if (fuseLength == 15) 
{ 

 System.out.println(“You are at the minimum fuse length, conQnue?”); 
 String answer = Scan.nextLine(); 
 if (answer.equals(“yes”)) 
   fc.fire(); 

} 
else 
{ 

 System.out.println(“Error, fuse not long enough to ignite safely”); 
} 

Testing

How much?

Compiles!  Every possible 
input to the 
program 

Used what is 
in the specificaQon 

Tested on a couple 
of cases I came up 
with 

Edge cases 
5‐6 custom 
cases 

Recommended  
level 

Testing

Summary

•  Testing

– Rationale

– Example / Industry methods

– Edge cases

– How much

