Wireless Sensor Networks Catherine Greene Chloe Norris CREU 2010-2011

Wireless Sensor Network (WSN)

- Detects
 - Temperature
 - Sound
 - Vibrations
 - Pressure
 - Motion
 - Pollutants

- Uses
 - Industrial process & monitoring
 - Machine monitoring
 - Monitoring the environment
 - Healthcare
 - Home automation
 - Traffic control

Nodes

- What it consists of
 - Can have more than one sensor
 - Usually has a radio transceiver
 - For wireless communication
 - Small microcontroller
 - Energy source
 - Ex: battery

- Prices
 - Varies
 - Size
 - Complexity
 - A more complex sensor could be a few hundred
 - A less intricate one could be fairly cheap

How they work

- Sensors support a multi-hop routing algorithm
 - nodes function as forwarders
 - Relay data packets to a base station
 - (known as a wireless ad-hoc network)
- Think of a sensor like a computer

- Area Monitoring
 - WSN would be put in an area where something is being monitored
 - Ex: a country at war with another may place nodes over a battlefield to detect enemy intrusion, sensors would detect heat, pressure, sound, light, electro-magnetic fields, vibrations, etc... If a sensor went off it would report it to a base station (message might be sent through internet or satellite)
 - Ex: detecting vehicles

- Environmental Monitoring
 - Similar to area monitoring
 - Ex (pictured): state of permafrost in the Swiss Alps
 - Ex: coastal erosion
 - Ex: glacier monitoring

- Greenhouse Monitoring
 - Involves monitoring temperature and humidity levels in a greenhouse
 - If temperature and/or humidity drops a sensor could notify the manager of the greenhouse (through email/text) or trigger a misting system, open vents, turn fans on, or control other system responses

Source: <u>http://en.wikipedia.org/wiki/Wireless_sensor_network</u> Picture: http://www.bannerengineering.com/en-US/wireless/surecross_web_appnotes

- Machine Health Monitoring
 - Using WSNs saves money
 - Wires can be up to \$1000 per foot
 - WSNs utilizes more functions
 - More accessible areas
 - Sensors monitor machinery which involves less human errors

- Landfill/Ground Well monitoring
 - Can monitor something such as a leachate level
 - Wireless device would log data, perform calculations, or notify personnel
 - Saves room for human error

Source: http://en.wikipedia.org/wiki/Wireless_sensor_network

Characteristics

- ability to withstand bad environmental conditions
- can deal with node failures
- portable
- have dynamic network topology
- communicate failures,
- their node heterogeneity
- large scale of deployment
- unattended operation
- capacity of a node is scalable
 - only limited by the bandwidth of a gateway node.

Sensors Now

- Sensor nodes are more of a prototype
- Current producing challenges
 - Small & low cost
 - Scarcest resource of nodes is energy
 - Which establishes how long the WSN will last
 - Meant to be sent out in a large scale
- Algorithms & protocols are needed to fix
 - lifetime maximization
 - Robustness
 - Fault tolerance
 - Self-configuration
 - Security & mobility (when the nodes/base stations are moving)

Types of Operating Systems

- eCos
- uC/COS
- TinyOS- One of first operating systems designed for WSNs
 - Event driven programming
 - External event 📥 event handler
- nesC- Language used for TinyOS and other WSN operating systems
 - Extension to C programming Language

Operating Systems Cont.

- Some WSN operating systems use C
 - Contiki, MANTIS, BTnut, and Nano-RK
- Contiki designed to support loading modules over the network
 - Event driven
 - Includes protothreads
- MANTIS and Nano-RK kernels are based on preemptive multithreading (kernel not event driven)

Newer Operating Systems

- LiteOS- Newly devolved OS for WSNs
 - Provides UNIX like abstraction
 - C programming language
- ERIKA Enterprise- open-source real-time kernel

Algorithms

- Distributed algorithms
- Energy in WSNs limited
 - Idle listening- very costly with energy
- Energy aware algorithms
- Transmission distance from sensor to base station
 - Data transmission usually multi hop

Simulators

- Specially designed network simulator platforms
 TOSSIM
- Agent based modeling and simulation
 - Complex systems
- Allows designer to solve actual problem with an application design

Data Gathered

- Numerical data
- Central base station
- Open Geospatial Consortium (OGC)
 - Standards for interoperability interfaces and metadata encodings
 - Control of Wireless Sensor Networks through a Web Browser
- Different techniques for retrieving data

Source: http://en.wikipedia.org/wiki/Wireless_sensor_net work