
Presented by
Bretny Khamphavong & Nancy White

 Free and open source component based
operating system and platform targeting
wireless sensor networks (or WSNs)

 Embedded operating system written in
the nesC programming language as a set
of cooperating tasks and processes

 Dialect of C optimized for
the limitations of sensor
networks

 Separation: construction and
composition; programs are built out of
components, which are assembled to
form whole programs

 Specification: interfaces intended to
represent the functionality that the
component provides to its user,
interfaces represent the functionality the
component needs to perform its job

 Interfaces are bidirectional and are
statically linked to each other via their
interfaces

 Available memory is typically very low

 Written in such a way to allow for
maximum concurrency with only one
stack

 Little processing power for the greatest
efficiency

 Processing can occur while waiting for
the input/output (I/O) completion of
transmitted data

 Example: Command line utility asking
for a user’s input
◦ Normal execution occurs while waiting

◦ Information appropriately processed when
received

 Works from one wireless
sensor to another

 All I/O operations lasting
longer than a few hundred
microseconds are made
asynchronous via callback

 Creates key feature of
non-blocking I/O from a single stack

 Way to reference an executable piece of code
by another executable piece of code

 Applications written for TinyOS need to be
able to provide pieces of code that can be
executed when the transmission of data or
I/O operation is complete

 TinyOS uses these “events” extensively, and
they are linked into the application to
increase performance

 Programmers must understand new
programming concepts:
◦ Instead procedural code, complex tasks are

linked together through a series of events

◦ Tasks can be scheduled at a later time from
a FIFO queue

◦ Sufficient for high I/O applications, but may
be problematic for high CPU applications

 Takes higher procedure tasks and executes
them before the less important tasks.

 The operating system can also post tasks that
do not need to be run immediately

 The tasks are done in a first in first out or
FIFO order

 The compiler converts the code into binary

 GNU Toolchain: blanket term for a
collection of programming tools
produced by the GNU Project

 GNU Project: was developed to create a
complete Unix-like operating system of
free software

 These tools form a toolchain or suite of
tools used in a serial manner to develop
applications and operating systems

 GNU toolchain was very important in
developing software for embedded
systems

 TinyOS is a light weight operating
system which emphasizes low
resource usage and high
concurrency for I/O operations

 Concept of event handlers are
common in some programming
areas, but challenges and exposes
developers to a different level of
thinking

 TinyOS Wikipedia:
http://en.wikipedia.org/wiki/TinyOS

 TinyOS Documentation Wiki:
http://docs.tinyos.net/

 Callback (computer science) Wikipedia:
http://en.wikipedia.org/wiki/Callback_(computer
_science)

 Asynchronous I/O Wikipedia:
http://en.wikipedia.org/wiki/Asynchronous_I/O

 GNU Project: http://www.gnu.org/

 GNU toolchain:
http://en.wikipedia.org/wiki/GNU_toolchain

http://en.wikipedia.org/wiki/TinyOS
http://en.wikipedia.org/wiki/TinyOS
http://docs.tinyos.net/
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://www.gnu.org/
http://en.wikipedia.org/wiki/GNU_toolchain

