
Presented by
Bretny Khamphavong & Nancy White

 Free and open source component based
operating system and platform targeting
wireless sensor networks (or WSNs)

 Embedded operating system written in
the nesC programming language as a set
of cooperating tasks and processes

 Dialect of C optimized for
the limitations of sensor
networks

 Separation: construction and
composition; programs are built out of
components, which are assembled to
form whole programs

 Specification: interfaces intended to
represent the functionality that the
component provides to its user,
interfaces represent the functionality the
component needs to perform its job

 Interfaces are bidirectional and are
statically linked to each other via their
interfaces

 Available memory is typically very low

 Written in such a way to allow for
maximum concurrency with only one
stack

 Little processing power for the greatest
efficiency

 Processing can occur while waiting for
the input/output (I/O) completion of
transmitted data

 Example: Command line utility asking
for a user’s input
◦ Normal execution occurs while waiting

◦ Information appropriately processed when
received

 Works from one wireless
sensor to another

 All I/O operations lasting
longer than a few hundred
microseconds are made
asynchronous via callback

 Creates key feature of
non-blocking I/O from a single stack

 Way to reference an executable piece of code
by another executable piece of code

 Applications written for TinyOS need to be
able to provide pieces of code that can be
executed when the transmission of data or
I/O operation is complete

 TinyOS uses these “events” extensively, and
they are linked into the application to
increase performance

 Programmers must understand new
programming concepts:
◦ Instead procedural code, complex tasks are

linked together through a series of events

◦ Tasks can be scheduled at a later time from
a FIFO queue

◦ Sufficient for high I/O applications, but may
be problematic for high CPU applications

 Takes higher procedure tasks and executes
them before the less important tasks.

 The operating system can also post tasks that
do not need to be run immediately

 The tasks are done in a first in first out or
FIFO order

 The compiler converts the code into binary

 GNU Toolchain: blanket term for a
collection of programming tools
produced by the GNU Project

 GNU Project: was developed to create a
complete Unix-like operating system of
free software

 These tools form a toolchain or suite of
tools used in a serial manner to develop
applications and operating systems

 GNU toolchain was very important in
developing software for embedded
systems

 TinyOS is a light weight operating
system which emphasizes low
resource usage and high
concurrency for I/O operations

 Concept of event handlers are
common in some programming
areas, but challenges and exposes
developers to a different level of
thinking

 TinyOS Wikipedia:
http://en.wikipedia.org/wiki/TinyOS

 TinyOS Documentation Wiki:
http://docs.tinyos.net/

 Callback (computer science) Wikipedia:
http://en.wikipedia.org/wiki/Callback_(computer
_science)

 Asynchronous I/O Wikipedia:
http://en.wikipedia.org/wiki/Asynchronous_I/O

 GNU Project: http://www.gnu.org/

 GNU toolchain:
http://en.wikipedia.org/wiki/GNU_toolchain

http://en.wikipedia.org/wiki/TinyOS
http://en.wikipedia.org/wiki/TinyOS
http://docs.tinyos.net/
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://www.gnu.org/
http://en.wikipedia.org/wiki/GNU_toolchain

