
Crossbow: MoteWorks
Getting Started Guide

Presented by Catherine Greene, Bretny
Khamphavong, Chloe Norris, and Nancy White

Sections 1-3
Presented by Catherine Greene

MoteWorks

 MoteWorks
◦ end-to-end enabling platform for the

creation of wireless sensor networks

◦ easy-to-use wireless original equipment
manufacturer

 OEM refers to the company that originally
manufactured the product (wikipedia)

 Allows for more freedom
◦ Unique differentiation to applications

◦ Innovative solutions to the market quickly

Information taken from: http://en.wikipedia.org/wiki/Original_equipment_manufacturer
MoteWorks Getting Started Guide

Software Tiers
 A wireless network deployment is composed of three

distinct software tiers
◦ Mote Tier
 Xmesh located

◦ The software that has the networking algorithms that form a reliable
communication to connect all the nodes in the mesh cloud to the server

◦ Server Tier
 Always on

 The facility that handles translation and buffering od data
coming from the wireless network and provides the bridge
between the wireless motes and the internet clients

◦ Client Tier
 Provides a graphical interface and software (MoteView) for

managing the network
◦ Software is made for low-power battery-operated networks and

provides an end-to-end solution across all the tiers of the wireless
sensor networking applications

Information and Images taken from: MoteWorks Getting Started Guide

SoftwareTiers

Xmesh Landscape

Information and Images taken from: MoteWorks Getting Started Guide

Un/Installing MoteWorks
 One needs

◦ PC with Windows
◦ 1 GB or more of free space in destination drive
◦ 550 MB or more of space in C drive

 How to Install
◦ Insert MoteWorks CD in CD-ROM drive
◦ Double click on MoteWorks_<version>_Setup.exe
◦ InstallShield Wizard will come up and guide you on what to

do

 How to Uninstall
◦ Can use the remove option for MoreWorks which can be

found under Start>Control Panel>Add/Remove Programs
 Removes MoteWorks Tree, Programmer’s Notepad and

MoteConfig
◦ but other components like viz., Graphviz, XSniffer, PuTTY and

TortoiseCVS have to be removed seperately from the add/remove
programs wizard.

Information and Images taken from: MoteWorks Getting Started Guide

MoteWorks

 Comes with Programmer’s Notepad
◦ Simple IDE for NesC code

◦ Start>Programs>Crossbow>PN

 Comes with Cygwin
◦ Unix/Linux emulation

◦ Optional interface for compiling and downloading
Mote applications in MoteWorks

◦ Double clicking the icon on your desktop

Information and Images taken from: MoteWorks Getting Started Guide

Setting up Aliases
 It's recommended that you setup aliases

◦ Commonly used commands

◦ Aliases are to be edited at the bottom of the filed
called profile which is located in <install
dir>/cygwin/etc/

◦ Useful for quickly changing to commonly used
directories while in the Cygwin shell

◦ some the aliases appear as two lines, all are
written as one line

Information and Images taken from: MoteWorks Getting Started Guide

Compiling and Platforms

 Compiling MoteWorks
applications can be
done in a Cygwin
window
◦ "make <platform>"

Information and Images taken from: MoteWorks Getting Started Guide

Programming

 Micro In-System Programmer (UISP)
◦ Standard programming software

◦ Takes various arguments according to the
programmer (erase, verify, program, etc.).

 You need to specify the type of device you are using
and how to communicate with it
◦ Done using environment variables

Information and Images taken from: MoteWorks Getting Started Guide

Installing MW Apps into a Mote
 Programming tools include a method of programming

unique node addresses without having to edit source code

 To set the node address/ID during program load, the
syntax for installing is "make <platform> re/install,<n>
<programmer>,<port>"
◦ <programmer> and <port> are the name of the programmer the port

ID or address or number of the host PC to which the programmer is
attached

◦ <n> is an optional number (in decimal) to set the node ID or address

 Assigning a node ID (", <n>") is optional

◦ <platform> is the type of Mote processor/ radio hardware platform

◦ "install,<n>" compiles the application for the target platform, sets the
node ID/address and programs the Mote

◦ "reinstall,<n>― sets the node ID/address and downloads the pre-
compiled program (into the mote) and it does not recompile, using
this option is a lot faster.

Information and Images taken from: MoteWorks Getting Started Guide

Automated Tools
 Build command filters out the compile output to highlight only error messages and

warnings
 Buildall command performs an automated build of all applications under that

application folder
 Flash command flashes an image onto the Mote
 Flashall command flashes an image onto a test bed of motes
 Fuses command allows the user to read or write the fuse settings of the mote on the

programming interface board
 Motelist command lists MIB=520 and Telos devices that are attached to the USB port
 Gettos command allows the user to see how their current TinyOS environment is

configured
 Settos command allows a user to switch to a new MotesWorks tree by changing the

symbolic link
◦ The first time this is run it renames your current MoteWorks tree to the specified version

 The usetos command allows a user to switch between MoteWorks and a legacy
TinyOS envirnment
◦ usetos switches to MoteWorks, usetos tinyos switches to TinyOS 1.x, etc..

 The make command (make <platform>) allows users to compile their nesC code with
many options from the command line

Information and Images taken from: MoteWorks Getting Started Guide

Reviewing TinyOS
and nesC

Sections 4 and 5

Presented by Bretny
Khamphavong

Primary Concepts of TinyOS

 Application: set of components linked
together to form a run-time executable

 Component
◦ Module - implements one or more
interfaces

◦ Configuration – ―wires‖ other components
together

 Interface
◦ Bidirectional - specify both commands that
a module must implement and events that
modules must handle

Application Make Up:
Makefiles
 Makefiles and nesC files that implement

and wire up the application

 Makefile and Makefile.component define
the dependencies for an application

◦ Makefile tends to have the same
contents across all applications

◦ Makefile.component can be used to
specify dependencies for this particular
application

Application Make Up: nesC
files

 nesC files can be identified because
they use the extension ―.nc‖ for all
source files—interfaces, modules,
and configurations

 Comments inside these files can
either be single line ―//‖ style
comments, or multiline ―/* */‖ style
comments

nesC Example Code
 Modules are nesC files

that perform two main
functions:
◦ Define the interfaces the

module provides
◦ Implement those interfaces

with nesC code

 StdControl interface with
implementation that
returns SUCCESS when
each function is called

 The interfaces provided
and implementation are
separated into a provides
and implementation block
respectively

module ModuleName {
provides {

interface StdControl;
}

}
implementation {

command result_t StdControl.init() {
return SUCCESS;

}
command result_t StdControl.start() {

return SUCCESS;
}
command result_t StdControl.stop() {

return SUCCESS;
} }

Wired Configurations
 A configuration can also provide interfaces by

wiring components together into more complex
interface providers, but it is not required to

 In the implementation section of an application
configuration, the modules are wired together.

 For example:

Main.StdControl -> MyAppM.StdControl;

 Tells the compiler that the Main.StdControl
interface is provided for by the StdControl
interface in MyAppM

All Applications Must Have
“Main” Component

 Referred to as the scheduler, or
driver, of the application

 All nesC application execution
starts in this component

 It must be properly wired into the
application with the application
configuration

Sensing Application and
XMesh

Sections 6 and 7
Presented by Chloe Norris

All Information and Images
taken from: MoteWorks Getting
Started Guide

Section 6

A Simple Sensing Application

All Information and Images
taken from: MoteWorks Getting
Started Guide

Hardware Requirements
 two standard edition Motes

◦ of MICA2 (MPR4x0), MICAz (MPR2400), XM2100,
XM2110 or XM9100 or OEM editions MPR600,
MPR2400, M2100, M2110 or M9100

 one sensor or data acquisition board
◦ MDA100, MTS300 or MTS310

 one gateway board
◦ MIB510, MIB520, or MIB600 and the
associated hardware (cables, power supply) for
each

 Windows PC with MoteWorks installed.

All Information and Images
taken from: MoteWorks Getting
Started Guide

A Simplified Sensing Application

 Take light readings using one of the following
sensors boards: MTS300/310 or MDA100

 Use the Mote serial port (UART) and radio to
send sensor data to the base station

 Blink the yellow LED when the sensor is
sampled

 Blink the green LED when the sensor data
message is successfully sent to the base
station

 Compile and debug if necessary

All Information and Images
taken from: MoteWorks Getting
Started Guide

Getting Started
 Application’s

configuration is
located in the
MyApp.nc file

 To create the
applications
configuration, the
illustration to the left
would be entered into
the Programmers
Notepad

All Information and Images
taken from: MoteWorks Getting
Started Guide

Getting Started Continued

 Blinking lights every seconds
◦ Firing of the timer, sampling light sensor, and
then sending message back to base station

◦ Red: 1 second timer event fired

◦ Yellow: light sensor has been sampled

◦ Green: Sensor message has been sent back to
base station

All Information and Images
taken from: MoteWorks Getting
Started Guide

XServe
 XServe is an

application that
installs with
MoteWorks for the
purpose of
displaying sensor
message packet
contents as they
arrive on the PC
over serial port.

All Information and Images
taken from: MoteWorks Getting
Started Guide

Sending Sensor Data over the
Radio

 One change needed
in the code of the
MyAppM.nc file

 SendMsg.send
command decides
where the message
packet should be sent

 TOS_BCASE_ADDR
tells the
communications
component to send
the message through
the radio.

All Information and Images
taken from: MoteWorks Getting
Started Guide

Using Xsniffer to View Sensor Data
Sent Over The Radio
 XSniffer used to eavesdrop on messages sent

over the Mote radios.
◦ Monitor messages sent from modified sensing

application

 Modify the sensing application in the
/lesson_3 folder onto a Mote.

 Tools>shell
 make mica2 install, 1 mib510, com1
 Remove the Mote from the programming

board
 plug one of the sensorboards onto the Mote

and turn it on

All Information and Images
taken from: MoteWorks Getting
Started Guide

Using Xsniffer to View Sensor Data
Sent Over The Radio Continued
 Install the XSniffer application onto another

Mote

 Node id of 2

 Start Xsniffer by double clicking desktop icon

 Options>General Packet Type

 Go back to Log Tab

 Select COM port connected to programming
board

 Click start to begin ―Sniffing‖

All Information and Images
taken from: MoteWorks Getting
Started Guide

Using Xsniffer to View Sensor Data
Sent Over The Radio Continued

 Elapsed time the
messages are begin
sent about 1 second
apart

 Each time the LEDs
blink you should
see a new message
captured by
XSniffer.

All Information and Images
taken from: MoteWorks Getting
Started Guide

Using a Sensorboard

 Specify the sensorboard

 Send a message containing the sensor
data back to the base station

 GenericComm- used to send messages
through the UTART port over to the radio

All Information and Images
taken from: MoteWorks Getting
Started Guide

XSensor Applications Supported in
MoteWorks

 Crossbow’s sensor and data acquisition
boards supported with XSensor enabled
applications

 XSensor applications are test applications
for Crossbow’s sensor data acquisition
boards.

 Quickly and easily test sensor and data
acquisition boards

 Send data over one hop

All Information and Images
taken from: MoteWorks Getting
Started Guide

Section 7
XMesh enabled Sensing Application

All Information and Images
taken from: MoteWorks Getting
Started Guide

Hardware Requirements

 Two Motes
◦ standard editions of MICA2 (MPR4x0), MICAz

(MPR2400), XM2100, XM2110 or XM9100 or OEM
editions MPR600, MPR2400, M2100, M2110 or
M9100.

 One sensor or data acquisition board
◦ MDA100, MTS300 or MTS310

 One gateway board
◦ MIB510, MIB520, or MIB600 and the associated

hardware (cables, power supply) for each

 A Windows PC with MoteWorks installed

All Information and Images
taken from: MoteWorks Getting
Started Guide

A Simple Sensing Application

 Simple sensing application using the XMesh
multi-hop networking service would
◦ Take light readings

◦ Use the Mote serial port (UART) and radio to send
sensor data to the base station

◦ Blink the yellow LED when the sensor is sampled

◦ Blink the green LED when the sensor data message
is successfully sent to the base station

◦ Compile and debug if necessary

All Information and Images
taken from: MoteWorks Getting
Started Guide

Getting Started
 Create folder for

code

 To create the
application’s
configuration, enter
the text shown on
the right in the
Programmer’s
Notepad

 Save File

All Information and Images
taken from: MoteWorks Getting
Started Guide

Using XSniffer to View Sensor
Data Through the Network

 Monitor the messages being sent from the
sensor node

 Remove the XMeshBase programmed Mote
from the programming board

 Install the XSniffer application onto a third
Mote that you will plug into your
programming board (base station)

 Node id of 2
 Start the XSniffer application by double

clicking on the icon on your desktop
 Options>XMesh>Log tab

All Information and Images
taken from: MoteWorks Getting
Started Guide

Using XSniffer to View Sensor Data
Sent Over the Radio Continued
 Select COM port connected to programming

board
 Click Start to begin ―Sniffing‖
 You should see message packets displayed in

Xsniffer
 Remove the XSniffer Mote from the programming

board and plug the XMeshBase Mote back into
the programming board

 File>Connect>Connect to Database.
 mts310_results and click Apply
 MoteView main menu select

File>Connect>Connect to
MIB510/MIB520/MIB600/Stargate.

All Information and Images
taken from: MoteWorks Getting
Started Guide

Using XSniffer to View Sensor
Data Sent through the Network
 Set the COM port value
 XMTS310 application
 Advanced tab
 In Data Logging

Options menu, check the
box for Spawn Separate
Shell

 Click Start to begin
―Sniffing‖

 All of Crosbow’s sensor
and data acquisition
boards are supported
with XMesh enabled
applications.

All Information and Images
taken from: MoteWorks Getting
Started Guide

XMesh Advanced
Features

Sections 8 and 9

Presented by Nancy White

8.1 Hardware Requirements

 Two motes

 One gateway board

 A Windows PC with MoteWorks

End-to-End
Acknowledgements

 In the MyApp subdirectory /lesson5 it
shows how to use XMesh end-to-end
acknowledgment, which have code to
modify transport requests to the base
station.

 A yellow LED light blinks when a message
is received.

MyApp subdirectory /lesson5

 MyApp will need to be installed on two
mote’s, one of the mote’s will be the sensor
node while the other one will function as the
base station.

 The mode you wish to use as the sensor node
should be plugged into the programming
board

 The red and green lights will flash until a
network is formed, once the network is
formed the yellow light will flash.

MyApp subdirectory /lesson5
con’t

 ReceiveAck file allows for interface writing
and requires a callback function that is
generated by XMesh.

 MODE_UPSTREAM_ACK tells XMesh to send a
message acknowledging that the message
was received to the base station

 ReceiveAck.receive is another
acknowledgment message that confirms a
message has arrived from the base station
and the LED light will flash green

MyApp subdirectory /lesson6

 Shows how to implement command
processing

 requires 2 mote’s, one will function as the
sensor node, and the other as the base
station, which is plugged into the
programming board and connected to
your PC.

 get_config, which will return the current
configuration parameters for a mote

MyApp subdirectory /lesson6
cont’d

 set_rate and is used to change the motes
sampling rate

 XCommandC component provides the
functionality for processing downstream
commands

 XCommand provides a single event name
received which implements the application
module and is signaled when a command
arrives to the node.

Data Logging
Application

Data Logging Application

 This section teaches you how to read and
write data from external flash on a mote

 Requires a Windows PC with MoteWorks,
two motes, and one gateway board

 allows the user to read and write
operations at the external flash is
ByteEEPROM

ByteEEPROM

 Allows you to log the number of light
sensor readings in the external flash.

 When a new reading comes it over-writes
the previous reading.

 Once the new reading is written to the
external flash the logged data is read
back from the flash and is placed in a
data packet on the computer

ByteEEPROM Cont’d

 The node that has a node id of 0 will always
be the base station

 Uses XServe to display the incoming packets
on the computer

 ByteEEPROM component is required to
request memory in the external flash and
carry out read and write operations

 All changes that need to be made use the
interface AllocationReq, ReadData, and
WriteData of ByteEEPROM

To Sum it up…

 The MoteWorks Getting Started Guide is a
very helpful reference when aid is needed
with:
◦ Uninstalling/reinstalling software

◦ How-to’s with commands and programming

◦ TinyOS and NesC help

◦ Running several different applications

◦ Several different MoteWorks features

