
LiteOS, Contiki, MANTIS, & nesC
Presented by Nancy White, Chloe Norris, Catherine

Greene, and Bretny Khamphavong

LiteOS
By Nancy White

 Similar to a unix operating system

 Fits on memory constrained motes such as
MicaZ and IRIS

 Used for Wireless Sensor Networks

 LiteOS is not event driven

LiteOS

 Supports Windows XP, Vista and Linux

 Has both MicaZ and IRIS nodes

 Plug-and-play routing stack

 Lightweight event logging

 Multi-threading kernel

 Writes applications in C

 Hierarchical file system

Features of LiteOS version 1.0

Contiki OS
Chloe Norris

Radford CREU

The Beginning

Image Source: www.sics.se/~adam
Information Source: http://www.sics.se/contiki/

 Released in 2001

 Specifically targeted and
designed for WSNs

 Swedish Institute of
Computer Science

 Led by Adam Dunkles

About the Operating System

Information Source: http://www.sics.se/contiki/

 Open source

 Highly portable system

 2 kilobytes of RAM

 40 kilobytes of ROM

 Written in C

 Event driven kernel

Contiki in Everyday Life

Image Source: http://www.sics.se/contiki/about-contiki.html
Information Source: http://www.sics.se/contiki/

 Used in ships, satellites,
oil drilling equipment, and
more

 Designed for
microcontrollers with
limited memory

Memory

Information Source: http://www.sics.se/contiki/

 Lightweight protothreads

 Supports per-process optional multi-threading

 3 different types of memory management:

1. Malloc()

2. Memory block allocation

3. Managed memory allocator

Communication

Image Source: http://www.sics.se/contiki/about-contiki.html
Information Source: http://www.sics.se/contiki/

 IP communication for
IPv4 and IPv6

 Rime low-power radio
networking stack

 Interacting with the
network of sensors via
web browser

Power Efficiency

Image Source: http://www.sics.se/contiki/about-contiki.html
Information Source: http://www.sics.se/contiki/

 Power efficiency within
most wireless sensors is
always a paramount
issue

 Software-based power
profiling mechanism

 keeps track of energy

usage within each node

MANTIS
By Catherine Greene

MANTIS Basics

 Name: MultimodAl system for NeTworks of In-situ
wireless Sensors

 Open source embedded multithreaded operating
system for wireless micro sensor platforms

 Written in C

 Implemented in a lightweight RAM footprint

 Fits less than 500 bytes of memory

 Including: kernel, scheduler, & network stack

Source: http://portal.acm.org/citation.cfm?id=1160178

 Developed by the MANTIS Group at CU Boulder

 07/27/2005 MOS 0.5.5 released

 Aug/Sept 2005 MOS deployed in the Bitterroot National
Forest (Idaho) in active wildfires to monitor weather
conditions

 5/30/2006 MOS TinyMO adds priorities and multithreading
framework for evolving TinyOS
 Ran TinyOS as a thread in MOS

 10/19/2007 MOS 1.0 beta released
 Improved Stability, bug fixes

MANTIS Developments

Source: http://mantisos.org/index/tiki-index.php.html

 Has a power-efficient scheduler that sleeps the
microcontroller

 Sleep() function

 Flexible with cross-platform support

 Ability to test on PCs, PDAs, and other sensor platforms

 Supports remote management of in-situ sensors
through dynamic reprogramming & remote shells

MANTIS Qualities

Source: http://www.cs.colorado.edu/~rhan/Papers/MANTIS-MONET.external.pdf

 Needs to work on improving:

 Low power management

 Though Sleep() helps conserve power, more power should
be conserved

 Demonstrating reliability or code updated over the
network, optimizing the size of updates

 Ensuring security & authenticity of updates

 Etc..

MANTIS Downfalls

Source: http://www.cs.colorado.edu/~rhan/Papers/MANTIS-MONET.external.pdf

nesC
By Bretny Khamphavong

 Extension of the C programming language

 Components can be referred to as “motes”

 Designed and written researchers from UC Berkeley,
Intel and Harvard University

 Authors include Eric Brewer, David Culler, David Gay,
Phil Levis, Rob von Behren and Matt Welsh

nesC: The Basics

1. Motes are highly reactive in terms of their normal
operation

 React to their environment or to radio signals sent by
other motes or by a controlling base station

 Driven by events

 Must process data as well as handle event arrival
concurrently

Challenges of the OS

2. Motes have very limited hardware resources
 Not expected to change

 Emphasis is on the physical size of the mote rather than
on memory or processing power

3. Software must enable highly available applications so
as to reduce mote failure due to software
 Language must be designed to minimize the number of

run-time errors and detect potential issues at compile
time

Challenges Con’t

 Basic building block of nesC applications; components
both provide and use interfaces

 If a component provides an interface, then it must
implement the commands for that interface.

 If a component uses an interface, then it must have
code to properly handle events defined within that
interface

Components

 Two types of code: Asynchronous Code (AC) and
Synchronous Code (SC)

 AC is code that is reachable from at least one
interrupt handler and thus the timing of its execution
cannot be perfectly predicted
 Example: telephone

 SC is code that is only reachable from tasks, and
therefore can never interfere with other synchronous
code

Concurrency

 Any shared state that is updated from an AC is a
potential race condition; and by extension if that
shared state is also updated by SC, it remains a race
condition

 nesC compiler can identify data that is updated by AC
and throw a compile-time error if that data is not
inside an atomic section

Race Conditions and
Atomic Reasoning

 Concepts and principles could be applied to any
imperative language

 Power and flexibility provided by interfaces make
developing complex applications on these embedded
systems reliable and high performing

In Conclusion…

