
Chloe Norris

MoteWorks Summary

Sections 6 and 7

Section 6 of the MoteWorks guide shows how to create a Mote firmware application that reads
light sensor data from a sensor board, sending message containing sensor data through the Mote serial
port, sending messages containing sensor data over the Mote radio to another Mote plugged into the
programming board, using XServe to parse packets on a PC, and using XSniffer to display the sensor data
messages on a PC.

The following are hardware requirements for the sensing applications in this summary: two
standard edition Motes, one sensor or data acquisition board, one gateway board, and a Windows PC
with MoteWorks installed.

 A simple sensing application would take light readings using the MTX300/310 or MDA100
sensing boards, use the More serial port (UART) and radio to send sensor data to the base station, and
compile and debug if necessary. To get started in making this application, the first step would be to
create the application folder (directory) where all of the needed application code and other files will be
stored.

The applications configuration is located in the MyApp.nc file. The Photo component is used to
send messages over the serial port and radio. To create an application’s configuration, certain code
would need to be saved into a new document in Programmer’s Notepad. When the application is
installed and running on the Mote you should see the red, green and yellow LED’s blinking every second.
Each LED indicated progression of firing the timer, sampling the light sensor and then sending the
message back to the base station.

XServe is used to display the sensor message packet contents as they arrive on the PC over the
serial port. XServe has many different unique features. XServe is a program that runs within a Cygwin
command prompt window.

To send sensor data over the radio, only one change would be needed in the code of the
MyAppM.nc file: (the changed code would read to this) if (call SendMsg.send(TOS BCAST
ADDR,sizeof(XDataMsg), &msg buffer) != SUCCESS). The SendMsg.send command decides where the
message packet should be sent.TOS_BCASE_ADDR tells the communications component to send the
message through the radio. This sends the message to any Mote within the range. If we want to send
the message to one specific base station we can set this parameter value to 0. The Mote plugged into
the base station always has a node id of 0.

XSniffer can be used to eavesdrop on messages sent over the Mote radios. It also is used to
monitor the messages sent from out modified sensing application. To view sensor data sent over the
radio with XSniffer, we first need to modify the sensing application in the /lesson_3 folder onto a Mote.
This can be done by loading the MyApp.nc file from /lesson_3 into the programmer’s notepad. Then
select Tools>shell. When prompted for parameters, type in make mica2 install, 1 mib510, com1.
Remove the Mote from the programming board, plug one of the sensorboards onto the Mote and turn it
on. You should see three LEDs blinking ever second. Then install the XSniffer application onto another
Mote that remains plugged into your programming board (base station). Install this application with a
node id of 2 using Programmer’s Notepad. Start the XSniffer application by double clicking on the icon

located on your desktop. Click on the “Options” tap and select “General Packet Type” radio button. Go
back to the Log tab, select the COM port that is connected to the programming board and then click on
Start to begin “sniffing” the radio traffic. Eventually, you should see message packets displayed in
XSniffer. Each time the LEDs blink, you should see a new message captured by XSniffer.

There are two additional features in the MyApp application form section 5. First, we are
sampling the sensorboard light sensor. Second, we are building a message packet that includes this light
sensor value and sending it back to the base station. The first thing we need to do when building a
sensing application is to specify the sensorboard we went to use. In order to sample the light sensor on
the sensor board we need to include a component named Photo in our configuration file. In order to
send a message containing the sensor data back to the base station we need access to the TinyOS
communication component named GenericComm, which is used to send messages through the UTART
port over to the radio depending on the destination node address specified.

All of Crossbow’s sensor and data acquisition boards are supported with XSensor enabled
applications. XSensor applications are test applications for Crossbow’s sensor data acquisition boards.
They allow users to quickly and easily test sensor and data acquisition boards when attached to Mote.
XSensor applications send data over one hop so all test Motes must be within RF range of the base
station.

Section 7 discusses the XMesh enabled sensing application. The hardware requirements are as
follows: three motes, one sensor acquisition board, one gateway/programming board, and a PC with
MoteWorks & Moteview installed.

Simple sensing application using the XMesh multi-hop networking service would use the Mote
radio to send sensor data to the base station and compile and debug if necessary. To get started, you
would first create the application folder (directory) where code and files would be stored. The first step
in creating an application is to type in the Makefile. You can copy and paste this file from the
subdirectory /lesson_4 into /myapp. When finished save the file.

The next step is to verify messages are being received at the base station by running the XServe
application. The following summarizes how to use XSniffer to view sensor data sent through the
network. The XSniffer can now be used to monitor the messages being sent from the sensor node.
Remove the XMeshBase programmed Mote from the programming board and set aside before
continuing. Install the XSniffer application onto a third Mote that you will plug into your programming
board (base station). Install this application with a node id of 2 using the Programmer’s Notepad. Then,
keep the Mote you just programmed plugged into the programming board and start the XSniffer
application by double clicking on the icon on your desktop. Click on the options tab and select the
XMesh packet Type radio button. Go back to the Log tab, select the COM port that is connected to the
programming board and then click on Start to begin “sniffing” the radio traffic. Eventually, you should
see message packets displayed in XSniffer. Messages are sent about 1 second apart.

To view your sensor network with MoteView, double click on the desktop icon, remove the
XSniffer Mote from the programming board and plug the XMeshBase Mote back into the programming
board. From the MoteView main menu select File>Connect>Connect to Database. Select
mts310_results and click Apply. From the MoteView main menu select File>Connect>Connect to
MIB510/MIB520/MIB600/Stargate. Set the COM port value to the correct value for your setup. Select
the XMTS310 application from the XMesh Application drop down list. Select the Advanced tab. In Data
Logging Options menu, check the box for Spawn Separate Shell. Click on Start. You will now see XServe

start-up enabled to log sensor data to the database. Now move back to the main MoteView window and
you should see sensor data from node 1. All of Crosbow’s sensor and data acquisition boards are
supported with XMesh enabled applications.

