Section 9.5: Equations of Lines and Planes

Practice HW from Stewart Textbook (not to hand in)
p. 673 \# 3-15 odd, 21-37 odd, 41, 47

Lines in 3D Space

Consider the line L through the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ that is parallel to the vector $v=\langle a, b, c\rangle$

The line L consists of all points $Q=(x, y, z)$ for which the vector $\overrightarrow{\boldsymbol{P Q}}$ is parallel to \boldsymbol{v}. Now,

$$
\overrightarrow{P Q}=<x-x_{0}, y-y_{0}, z-z_{0}>
$$

Since $\overrightarrow{\boldsymbol{P Q}}$ is parallel to $\boldsymbol{v}=\langle a, b, c\rangle$,

$$
\overrightarrow{\boldsymbol{P Q}}=t v
$$

where t is a scalar. Thus

$$
\left\langle x-x_{0}, \boldsymbol{y}-\boldsymbol{y}_{0}, z-z_{0}\right\rangle=\overrightarrow{\boldsymbol{P} \boldsymbol{Q}}=t \boldsymbol{v}=\langle t a, t b, t c\rangle
$$

Rewriting this equation gives

$$
\langle x, y, z\rangle-\left\langle x_{0}, y_{0}, z_{0}\right\rangle=t\langle a, b, c\rangle
$$

Solving for the vector $\langle x, y, z\rangle$ gives

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

Setting $\boldsymbol{r}=\langle x, y, z\rangle, \boldsymbol{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and $\boldsymbol{v}=\langle a, b, c\rangle$, we get the following vector equation of a line.

Vector Equation of a Line in 3D Space

The vector equation of a line in 3D space is given by the equation

$$
\boldsymbol{r}=\boldsymbol{r}_{0}+t \boldsymbol{v}
$$

where $\left.\boldsymbol{r}_{0}=<x_{0}, y_{0}, z_{0}\right\rangle$ is a vector whose components are made of the point $\left(x_{0}, y_{0}, z_{0}\right)$ on the line L and $\boldsymbol{v}=\langle a, b, c\rangle$ are components of a vector that is parallel to the line L.

If we take the vector equation

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

and rewrite the right hand side of this equation as one vector, we obtain

$$
\left\langle x, y, z>=<x_{0}+t a, y_{0}+t b, z_{0}+t c>\right.
$$

Equating components of this vector gives the parametric equations of a line.

Parametric Equations of a Line in 3D Space

The parametric equations of a line L in 3D space are given by

$$
x=x_{0}+t a, \quad y=y_{0}+t b, z=z_{0}+t c,
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a point passing through the line and $\boldsymbol{v}=\langle a, b, c\rangle$ is a vector that the line is parallel to. The vector $v=\langle a, b, c\rangle$ is called the direction vector for the line L and its components a, b, and c are called the direction numbers.

Assuming $a \neq 0, b \neq 0, c \neq 0$, if we take each parametric equation and solve for the variable t, we obtain the equations

$$
t=\frac{x-x_{0}}{a}, \quad t=\frac{y-y_{0}}{b}, \quad t=\frac{z-z_{0}}{c}
$$

Equating each of these equations gives the symmetric equations of a line.

Symmetric Equations of a Line in 3D Space

The symmetric equations of a line L in 3D space are given by

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a point passing through the line and $\boldsymbol{v}=\langle a, b, c\rangle$ is a vector that the line is parallel to. The vector $v=\langle a, b, c\rangle$ is called the direction vector for the line L and its components a, b, and c are called the direction numbers.

Note!! To write the equation of a line in 3D space, we need a point on the line and a parallel vector to the line.

Example 1: Find the vector, parametric, and symmetric equations for the line through the point ($1,0,-3$) and parallel to the vector $2 \boldsymbol{i}-4 \boldsymbol{j}+5 \boldsymbol{k}$.

Example 2: Find the parametric and symmetric equations of the line through the points $(1,2,0)$ and $(-5,4,2)$

Solution: To find the equation of a line in 3D space, we must have at least one point on the line and a parallel vector. We already have two points one line so we have at least one. To find a parallel vector, we can simplify just use the vector that passes between the two given points, which will also be on this line. That is, if we assign the point $P=(1,2,0)$ and $Q=(-5,4,2)$, then the parallel vector v is given by

$$
\boldsymbol{v}=\overrightarrow{\boldsymbol{P} \boldsymbol{Q}}=<-5-1,4-2,2-0\rangle=<-6,2,2\rangle
$$

Recall that the parametric equations of a line are given by

$$
x=x_{0}+t a, \quad y=y_{0}+t b, z=z_{0}+t c
$$

We can use either point P or Q as our point on the line $\left(x_{0}, y_{0}, z_{0}\right)$. We choose the point P and assign $\left(x_{0}, y_{0}, z_{0}\right)=(1,2,0)$. The terms a, b, and c are the components of our parallel vector given by $\boldsymbol{v}=<-6,2,2>$ found above. Hence $a=-6, b=2$, and $c=2$. Thus, the parametric equation of our line is given by

$$
x=1+t(-6), \quad y=2+t(2), \quad z=0+t(2)
$$

or

$$
x=1-6 t, \quad y=2+2 t, \quad z=2 t
$$

To find the symmetric equations, we solve each parametric equation for t. This gives

$$
t=\frac{x-1}{-6}, \quad t=\frac{y-2}{2}, \quad t=\frac{z}{2}
$$

Setting these equations equal gives the symmetric equations.

$$
\frac{x-1}{-6}=\frac{y-2}{2}=\frac{z}{2}
$$

The graph on the following page illustrates the line we have found

Graph of Gre $x=1$ fit, $y=2+2 h, z=2 t$

It is important to note that the equations of lines in 3D space are not unique. In Example 2, for instance, had we used the point $Q=(-5,4,2)$ to represent the equation of the line with the parallel vector $v=<-6,2,2>$, the parametric equations becomes

$$
x=-5-6 t, \quad y=4+2 t, z=2+2 t
$$

Example 3: Find the parametric and symmetric equations of the line passing through the point $(-3,5,4)$ and parallel to the line $x=1+3 t, y=-1-2 t, z=3+t$.

Solution:

Planes in 3D Space

Consider the plane containing the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ and normal vector $\boldsymbol{n}=\langle a, b, c>$ perpendicular to the plane.

The plane consists of all points $Q=(x, y, z)$ for which the vector $\overrightarrow{\boldsymbol{P Q}}$ is orthogonal to the normal vector $\boldsymbol{n}=\langle a, b, c\rangle$. Since $\overrightarrow{\boldsymbol{P Q}}$ and \boldsymbol{n} are orthogonal, the following equations hold:

$$
\begin{gathered}
\boldsymbol{n} \cdot \overrightarrow{\mathbf{P Q}}=0 \\
<. \boldsymbol{a} . \boldsymbol{b} . \boldsymbol{c}>\cdot<x-x_{0}, y-y_{0}, z-z_{0}>=0 \\
\boldsymbol{a}\left(x-x_{0}\right)+\boldsymbol{b}\left(y-y_{0}\right)+\boldsymbol{c}\left(z-z_{0}\right)=0
\end{gathered}
$$

This gives the standard equation of a plane. If we expand this equation we obtain the following equation:

$$
a x+b y+c z \underbrace{-a x_{0}-b y_{0}-c z_{0}}_{\text {Constant } d}=0
$$

Setting $d=-a x_{0}-b y_{0}-c z_{0}$ gives the general form of the equation of a plane in 3D space

$$
a x+b y+c z+d=0 .
$$

We summarize these results as follows.

Standard and General Equations of a Plane in the 3D space

The standard equation of a plane in 3D space has the form

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane and $\boldsymbol{n}=\langle a, b, c\rangle$ is a vector normal (orthogonal to the plane). If this equation is expanded, we obtain the general equation of a plane of the form

$$
a x+b y+c z+d=0
$$

Note!! To write the equation of a plane in 3D space, we need a point on the plane and a vector normal (orthogonal) to the plane.

Example 4: Find the equation of the plane through the point $(-4,3,1)$ that is perpendicular to the vector $\boldsymbol{a}=-4 \boldsymbol{i}+7 \boldsymbol{j}-2 \boldsymbol{k}$.

Solution:

Example 5: Find the equation of the plane passing through the points (1, 2, -3$),(2,3,1)$, and ($0,-2,-1$).

Solution:

Intersecting Planes

Suppose we are given two intersecting planes with angle θ between them.

Let \boldsymbol{n}_{1} and \boldsymbol{n}_{2} be normal vectors to these planes. Then

$$
\cos \theta=\frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}
$$

Thus, two planes are

1. Perpendicular if $\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}=0$, which implies $\theta=\frac{\pi}{2}$.
2. Parallel if $\boldsymbol{n}_{2}=\boldsymbol{c} \boldsymbol{n}_{1}$, where c is a scalar.

Notes

1. Given the general equation of a plane $a x+b y+c z+d=0$, the normal vector is $\boldsymbol{n}=\langle a, b, c\rangle$.
2. The intersection of two planes is a line.

Example 6: Determine whether the planes $3 x+y-4 z=3$ and $-9 x-3 y+12 z=4$ are orthogonal, parallel, or neither. Find the angle of intersection and the set of parametric equations for the line of intersection of the plane.

Solution:

Example 7: Determine whether the planes $x-3 y+6 z=4$ and $5 x+y-z=4$ are orthogonal, parallel, or neither. Find the angle of intersection and the set of parametric equations for the line of intersection of the plane.

Solution: For the plane $x-3 y+6 z=4$, the normal vector is $\boldsymbol{n}_{1}=<1,-3,6>$ and for the plane $5 x+y-z=4$, the normal vector is $\boldsymbol{n}_{2}=\langle 5,1,-1\rangle$. The two planes will be orthogonal only if their corresponding normal vectors are orthogonal, that is, if $\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}=0$. However, we see that

$$
\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}=\langle 1,-3,6>\cdot\langle 5,1,-1\rangle=(1)(5)+(-3)(1)+(6)(-1)=5-3-6=-4 \neq 0
$$

Hence, the planes are not orthogonal. If the planes are parallel, then their corresponding normal vectors must be parallel. For that to occur, there must exist a scalar k where

$$
\boldsymbol{n}_{2}=k \boldsymbol{n}_{1}
$$

Rearranging this equation as $k \boldsymbol{n}_{1}=\boldsymbol{n}_{2}$ and substituting for \boldsymbol{n}_{1} and \boldsymbol{n}_{2} gives

$$
k\langle 1,-3,6>=<5,1,-1\rangle
$$

or

$$
<k,-3 k, 6 k>=<5,1,-1>.
$$

Equating components gives the equations

$$
k=5, \quad-3 k=1, \quad 6 k=-1
$$

which gives

$$
k=5, k=-\frac{1}{3}, k=-\frac{1}{6} .
$$

Since the values of k are not the same for each component to make the vector \boldsymbol{n}_{2} a scalar multiple of the vector \boldsymbol{n}_{1}, the planes are not parallel. Thus, the planes must intersect in a straight line at a given angle. To find this angle, we use the equation

$$
\cos \theta=\frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}
$$

For this formula, we have the following:

$$
\begin{aligned}
& \boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}=\langle 1,-3,6\rangle \cdot\langle 5,1,-1\rangle=(1)(5)+(-3)(1)+(6)(-1)=5-3-6=-4 \\
& \left|\boldsymbol{n}_{1}\right|=\sqrt{(1)^{2}+(-3)^{2}+(6)^{2}}=\sqrt{1+9+36}=\sqrt{46} \\
& \left|\boldsymbol{n}_{2}\right|=\sqrt{(5)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{25+1+1}=\sqrt{27} \quad \text { (continued on next page) }
\end{aligned}
$$

Thus,

$$
\cos \theta=\frac{-4}{\sqrt{46} \sqrt{27}}
$$

Solving for θ gives

$$
\theta=\cos ^{-1}\left(\frac{-4}{\sqrt{46} \sqrt{27}}\right) \approx 1.68 \text { radians } \approx 96.5^{0} .
$$

To find the equation of the line of intersection between the two planes, we need a point on the line and a parallel vector. To find a point on the line, we can consider the case where the line touches the $x-y$ plane, that is, where $z=0$. If we take the two equations of the plane

$$
\begin{aligned}
& x-3 y+6 z=4 \\
& 5 x+y-z=4
\end{aligned}
$$

and substitute $z=0$, we obtain the system of equations

$$
\begin{align*}
& x-3 y=4 \tag{1}\\
& 5 x+y=4 \tag{2}
\end{align*}
$$

Taking the first equation and multiplying by -5 gives

$$
\begin{gathered}
-5 x+15 y=-20 \\
5 x+y=4
\end{gathered}
$$

Adding the two equations gives $16 y=-16$ or $y=-\frac{16}{16}=-1$. Substituting $y=-1$ back into equation (1) gives $x-3(-1)=4$ or $x+3=4$. Solving for x gives $x=4-3=1$. Thus, the point on the plane is $(1,-1,0)$. To find a parallel vector for the line, we use the fact that since the line is on both planes, it must be orthogonal to both normal vectors \boldsymbol{n}_{1} and \boldsymbol{n}_{2}. Since the cross product $\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}$ gives a vector orthogonal to both \boldsymbol{n}_{1} and \boldsymbol{n}_{2}, $\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}$ will be a parallel vector for the line. Thus, we say that

$$
\begin{aligned}
\boldsymbol{v}=\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & -3 & 6 \\
5 & 1 & -1
\end{array}\right| & =\boldsymbol{i}\left|\begin{array}{cc}
-3 & 6 \\
1 & -1
\end{array}\right|-\boldsymbol{j}\left|\begin{array}{cc}
1 & 6 \\
5 & -1
\end{array}\right|+\boldsymbol{k}\left|\begin{array}{cc}
1 & -3 \\
5 & 1
\end{array}\right| \\
& =\boldsymbol{i}(3-6)-\boldsymbol{j}(-1-30)+\boldsymbol{k}(1--15) \\
& =-3 \mathbf{i}+31 \mathbf{j}+16 \boldsymbol{k}
\end{aligned}
$$

Hence, using the point $(1,-1,0)$ and the parallel vector $\boldsymbol{v}=-3 \boldsymbol{i}+31 \boldsymbol{j}+16 \boldsymbol{k}$, we find the parametric equations of the line are

$$
x=1-3 t, \quad y=-1+31 t, \quad z=16 t
$$

The following shows a graph of the two planes and the line we have found.

Graph of planes and he of intersection

Example 8: Find the point where the line $x=1+t, y=2 t$, and $z=-3 t$ intersects the plane $-4 x+2 y-4 z=-2$.

Solution:

Distance Between Points and a Plane

Suppose we are given a point Q not in a plane and a point P on the plane and our goal is to find the shortest distance between the point Q and the plane.

By projecting the vector $\overrightarrow{\boldsymbol{P Q}}$ onto the normal vector \boldsymbol{n} (calculating the scalar projection $\boldsymbol{\operatorname { C o m p }}_{\boldsymbol{n}} \overrightarrow{\mathbf{P Q}}$), we can find the distance D.

$$
\begin{aligned}
& \text { Distance Between } \boldsymbol{Q} \\
& \text { and the plane }
\end{aligned}=\mathrm{D}=\left|\boldsymbol{\operatorname { c o m p }}_{\boldsymbol{n}} \overrightarrow{\boldsymbol{P Q}}\right|=\frac{|\overrightarrow{\boldsymbol{P} \boldsymbol{Q}} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|}
$$

Example 9: Find the distance between the point $(1,2,3)$ and line $2 x-y+z=4$.
Solution: Since we are given the point $Q=(1,2,3)$, we need to find a point on the plane $2 x-y+z=4$ in order to find the vector $\overrightarrow{\boldsymbol{P Q}}$. We can simply do this by setting $y=0$ and $z=0$ in the plane equation and solving for x. Thus we have

$$
\begin{gathered}
2 x-y+z=4 \\
2 x-0+0=4 \\
2 x=4 \\
x=\frac{4}{2}=2
\end{gathered}
$$

Thus $P=(2,0,0)$ and the vector $\overrightarrow{\boldsymbol{P Q}}$ is

$$
\overrightarrow{\boldsymbol{P} \boldsymbol{Q}}=\langle 1-2,2-0,3-0\rangle=\langle-1,2,3\rangle
$$

Hence, using the fact that the normal vector for the plane is $\boldsymbol{n}=\langle 2,-1,1\rangle$, we have
$\begin{gathered}\text { Distance Between } \\ Q \text { and the plane }\end{gathered}=\frac{|\overrightarrow{\boldsymbol{P} \boldsymbol{Q}} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|}=\frac{\mid\langle-1,2,3\rangle \cdot\langle 2,-1,1\rangle}{\sqrt{(2)^{2}+(-1)^{2}+(1)^{2}}}=\frac{|-2-2+3|}{\sqrt{4+1+1}}=\frac{|-1|}{\sqrt{6}}=\frac{1}{\sqrt{6}}$

Thus, the distance is $\frac{1}{\sqrt{6}}$.

