Increasing Student Interest in Mathematics using Cryptography

Rick Klima
Appalachian State University
Boone, North Carolina

Neil Sigmon
Radford University
Radford, Virginia

Introductory Concepts

- Cryptography is the science of transmitting information in a secret and confidential manner.
- Applications: Military, Internet transactions, computer data transfer.

What does Cryptography Offer?

- To execute many cryptographical algorithms, students only need to recall concepts such as division, prime numbers, and basic algebra.
- Cryptography provides an excellent mechanism for increasing student interest in exploring more advanced topics in mathematics.
- Application topics include linear algebra, abstract algebra, number theory, probability, and statistics

Some Famous Cryptographers

- Thomas Jefferson

- Edgar Allan Poe

- Navajo Code

Movies

FROM THE DIRECTOR OF FACECPFF AND M:1.a

Cryptology Course at Radford

- General education course sponsored by the Honors Academy at Radford University.
- Course primarily covers classic methods (Caesar, affine, Vigenère, Hill, etc.), historical Navajo Code, and also delves some into more modern methods - RSA.

The RSA Cryptosystem

- The RSA cryptosystem is named after its developers Ron Rivest, Adi Shamir, and Leonard Adelman.

Ron Rivest

Adi Shamir

Leonard Adelman

RSA Cryptosystem Setup

1. Choose two "large" primes p and q and compute the quantities

$$
m=p q \quad \text { and } \quad \phi(m)=f=(p-1) \cdot(q-1)
$$

2. A positive integer e is chosen where $\operatorname{gcd}(e, f)=1$. Using the Euclidean algorithm, we calculate an integer d where

$$
(e \cdot d) \bmod f=1
$$

Note that d is the multiplicative inverse of $e \bmod f$, that is $d=e^{-1} \bmod f$. Here, e will be called the enciphering exponent (the encryption key) and d will be called the deciphering exponent (the decryption key).
3. Using an alphabet assignment to convert from English letters to numbers, compute an English plaintext message number. Assuming that $x<m$, we use the enciphering exponent e to encipher the message by computing

$$
y=x^{e} \bmod m
$$

Here, y will be the "secret" message number (ciphertext) that will be transmitted from the sender to the recipient of the message.
4. To decipher the message, the recipient uses the deciphering exponent d to reverse the process of step 3 by computing

$$
x=y^{d} \bmod m
$$

The alphabet assignment is used to recover the message.

Fact

- When the message number x is larger than the modulus m, that is, when $x>m$, we encipher by breaking Y into smaller "block" numbers
$x_{1}, x_{2}, \ldots, x_{r}$, and encipher each block separately, that is, we compute
$y_{1}=x_{1}^{e} \bmod m \quad, \quad y_{2}=x_{2}^{e} \bmod m \quad, \ldots, y_{r}=x_{r}^{e} \bmod m$

Decipherment is done by computing
$x_{1}=y_{1}^{d} \bmod m \quad, x_{2}=y_{2}^{d} \bmod m, \ldots, x_{r}=y_{r}^{d} \bmod m$

Maplets

- Maplets are graphical user interfaces that allows the user to use the power of Maple without using a Maple worksheet.
- Maplets consist of a collection of elements that consist of windows along with their associated layouts, dialogs, and buttons for performing computations.

ASCII Alphabet Assignment

- When converting from letters to numbers the RSA, we will use the ASCII table.

char	coole	chior	code	char	Eode	chimr	conte	char	coille	ditar	conle
spance	32	0	48	Q	64	P	80	${ }^{4}$	96	p	112
1	33	1	49	A	65	\square	81	A	97	q	113
11	34	2	50	B	66	R	82	b	98	5	114
\#	35	3	51	C	67	S	83	c	99	5	115
\$	36	4	52	D	68	T	84	d	100	t	116
\%	37	5	53	E	69	U	85	e	101	u	117
*	38	6	54	F	70	V	86	f	102	V	118
,	39	7	5.5	G	71	W	87	g	103	-	119
(40	8	56	H	72	X	88	h	104	x	120
)	41	9	57	1	73	Y	89	1	105	Y	121
*	42	:	58	J	74	2	90	j	106	z	122
$+$	43	;	59	K	75	[91	k	107	1	123
,	44	$<$	60	L	76	,	92	1	108	1	124
-	45	$=$	61	M	77]	93	III	109)	125
+	46	$>$	62	N	78	-	94	\square	110	-	126
/	47	$?$	63	0	79	-	95	0	111	del	127

Example

- Suppose the receiver of a message creates a public key with the RSA parameter Maple using the numbers

54242452544 and 43245424542
to create two prime numbers and chooses $e=134137$ as the enciphering exponent.

The receiver makes the parameters
$\mathrm{m}=2345737889838909867283$ and $\mathrm{e}=134137$ public

The receiver keeps the following parameters secret

$$
\begin{aligned}
& p=54242452567, \\
& q=43245424549 \\
& f=2345737889741421990168 \\
& d=340011941449730259025
\end{aligned}
$$

Using the RSA encryption Maplet, the sender takes the receivers public key

$$
m=2345737889838909867283 \text { and } e=134137
$$

to encrypt the following message:

Maplets make it easy to create a public key and to quickly encipher and decipher messages using RSA algorithm!

Hence, the ciphertext is:

[63074541710863048747, 1882135469918134692681, 226699317000694577674, 2319946433273813731281, 1822471318437511634736,1398902965171551419100, 1729761806042712419533, 2678909426744499862, 1144532595277961741049,2069799042651537197110, 376200266194991291452, 487065980145284287303, 707623905885910184189, 35875494659909970486]

To decipher the message, the receiver uses the RSA decryption Maplet with the parameters

$m=2345737889838909867283$

$$
d=340011941449730259025
$$

Security of the RSA Cryptosystem

1. The security of the method is based on keeping the deciphering exponent d secret. To keep d secret, the primes p and q must be kept secret. If p and q can be secret, $f=(p-1)(q-1)$ can be kept secret and $d \equiv e^{-1}(\bmod f)$ cannot be computed.
2. However, it is much easier to find primes p and q and form $m=p q$ then it is to start with m and factor as $m=p q$.

Example

Suppose a sender uses the public key

$m=2345737889838909867283$ and $e=134137$
to encrypt the message
[1941335854818039786449, 726058883345036866334, 1422645991775084816137, 1779157299333574683296, 1539782531488563994152, 2292398699521170274407, 1902128095583550585001, 2124647642182590221928, 1706137521440487112136, 1337435825144484098480, 989503397947861977542, 1914927299122142769468, 721974133877527925763, 1389515695321139203177, 272122896369346617929, 1243706332579504024901, 682902026985031049178, 1623721904764295314626, 127126258460332603452, 78423282165852737564, 1887719205355552587446, 758571389653163238443, 1346212499949508308898, 1475737219089999807863, 257018094864891631356, 1817998327808722064884, 2077296216809108073870, 405288827971040729437]

Using the RSA breaker Maplet, m factors into the primes

$$
p=43245424549 \text { and } q=54242452567
$$

and the message deciphers as
"If the size of the primes used to form the encryption modulus are not large enough, the RSA system can be broken easily by factoring. In practice, prime of 100 digits or more are used to create more secure RSA schemes."

Other Schools Offering Cryptography

- High schools that have offered a similar course to Radford's cryptography course include the Southwest Virginia Governor's School and Appalachian Summer Regional Governor's School.
- These schools are designed to offer high school students special educational opportunities, including earning college credit.

Reference

- Klima, Richard E. and Sigmon, Neil P. Cryptology: Classical and Modern with Maplets, CRC Press, 2012.

Contact Information

- Rick Klima: klimare@appstate.edu

Department of Mathematical Sciences
Appalachian State University
Boone, North Carolina 28608

- Neil Sigmon: npsigmon@radford.edu

Department of Mathematics and Statistics
Radford University
Radford, Virginia 24142

