;; The first three lines of this file were inserted by DrRacket. They record metadata ;; about the language level of this file in a form that our tools can easily process. #reader(lib "htdp-beginner-reader.ss" "lang")((modname list-intro-before) (read-case-sensitive #t) (teachpacks ()) (htdp-settings #(#t constructor repeating-decimal #f #t none #f () #f))) (require "let-for-bsl.rkt") #| Follow the design recipe (the final version!): ---- Per data type: 1. Choose data definition 2. Give some examples of the data 3. Template: a. If handling a union type, include a cond w/ one branch per option. b. If handling a product-type, pull out each piece (field). c. Add the natural recursive call (as appropriate) d. Inventory: In all cases, think about what *type* (each piece) is, and think of some functions that process that type. ---- Per function: 4. write test cases 5. (a-d): header, purpose, contract/type, copy the template, and stub it. 6. Inventory with values: Consider a particular test case, and think about what *specific* *value* of each sub-expression. 7. complete the body 8. run tests |# #| Definition: argument: the value passed into a function parameter: a function's local variable/identifier which is initialized from the arguments (each time the function is *called*). |# #| Today's+Tomorrow's outline: 1. Design recipe (recall, v.quickly). 2. data def'n for: list (including the non-built-in-way) 3. processing a list: sum write: length write: contains? (return a bool) write: triple-every-even (return a *list*) write: my-max (note bad run-time) learn: let* |# ; Data Definition: ; list-of-number is: ; '(), OR ; (make-cons [number] [list-of-number]) ; "constructed list" ; Examples of data: ; '() is the empty list; there is also the named-constant `empty`. ; cons is a built-in structure with two fields: first, rest ;(define-struct cons (first rest)) ; The constructor isn't *actually* `make-cons`, but instead just `cons`. ; The selectors aren't *actually* `cons-first`, but instead just `first` ; and not `cons-rest`, but instead just `rest`. ; ; There *is* a predicate `cons? : ANY -> boolean`. ; Also, there is a predicate to test for the empty-list: `empty? : ANY -> boolean` ;; template: ; func-for-list : list-of-num -> ??? ; (define (func-for-list a-lon) ...) ; sum : list-of-num -> num (check-expect (sum '()) 0) (check-expect (sum (cons 3 '())) 3) (check-expect (sum (cons 4 (cons 3 '()))) 7) (check-expect (sum (cons 5 (cons 4 (cons 3 '())))) 12) ; sum : list-of-number -> number ; Return the sum of all the numbers in `a-lon`. ; (define (sum a-lon) ...) ; inventory with values: suppose that `a-lon` stands for ; (cons 5 (cons 4 (cons 3 '()))). ; So what is (first a-lon) in this case? 5 <--- ; So what is (rest a-lon) in this case? ; (cons 4 (cons 3 '())) <--- ; So what is (sum (rest a-lon)) in this case? 7 <--- ; sub-question: what is (rest a-lon) in this case? (cons 2 (cons 4 '())) ; So what should my answer be in this case? 12 (check-expect (sum '()) 0) (check-expect (sum (cons 4 '())) 4) (check-expect (sum (cons 2 (cons 4 '()))) 6) (check-expect (sum (cons 3 (cons 2 (cons 4 '())))) 9) (check-expect (my-length '()) 0) (check-expect (my-length (cons 4 '())) 1) (check-expect (my-length (cons 2 (cons 4 '()))) 2) (check-expect (my-length (cons 99 (cons 2 (cons 4 '())))) 3) ; my-length : list-of-number -> natnum ; Return the length of `a-lon`. ; (define (my-length a-lon) ...) ; contains-93? : list-of-number -> boolean ; Return whether `a-lon` contains 93. ; (define (contains-93? a-lon) #false) (check-expect (contains-93? '()) #f) (check-expect (contains-93? (cons 93 '())) #t) (check-expect (contains-93? (cons 7 '())) #f) (check-expect (contains-93? (cons 7 (cons 93 '()))) #t) (check-expect (contains-93? (cons 93 (cons 7 '()))) #t) (check-expect (contains-93? (cons 3 (cons 7 '()))) #f) (check-expect (contains-93? (cons 44 (cons 93 (cons 7 '())))) #t) (check-expect (contains-93? (cons 44 (cons 3 (cons 7 '())))) #f) #| truth-table: inputA inputB desired-answer #f #f | #f #f #t | #t #t #f | #t #t #t | #t |# ; contains? : list-of-number, number -> boolean ; Does `alon` contain `target`? ; #;(define (contains? a-lon target) #false) ; Alternately: we can simplify `(if true )` ; to `(or )` (check-expect (contains? '() 4) false) (check-expect (contains? (cons 4 '()) 4) true) (check-expect (contains? (cons 4 '()) 99) false) (check-expect (contains? (cons 2 (cons 4 '())) 99) false) (check-expect (contains? (cons 2 (cons 4 '())) 2) true) (check-expect (contains? (cons 2 (cons 4 '())) 4) true) (check-expect (contains? (cons 93 (cons 2 (cons 4 '()))) 93) true) (check-expect (contains? (cons 93 (cons 2 (cons 4 '()))) 4) true) (check-expect (contains? (cons 93 (cons 2 (cons 4 '()))) 77) false) (check-expect (contains? (cons 93 (cons 2 (cons 93 '()))) 93) true) ; contains? : list-of-number, number -> boolean ; Does `alon` contain `target`? ; (define (contains? a-lon target) #false) ; Functions *returning* a list: ; triple-every-even (and leave odd numbers untouched) ; (check-expect (tee '()) ...) (check-expect (tee (cons 4 '())) (cons 12 '())) (check-expect (tee (cons 7 '())) (cons 7 '())) (check-expect (tee (cons 2 (cons 4 '()))) (cons 6 (cons 12 '()))) (check-expect (tee (cons 93 (cons 2 (cons 4 '())))) (cons 93 (cons 6 (cons 12 '())))) ; tee : list-of-number -> list-of-number ; "triple-every-even" -- return another list like `a-lon`, ; but every even number is tripled (and odd numbers are unchanged). ; (define (tee a-lon) '())