Section 12.2/12.3: Iterated Integrals Double Integrals over General Regions

Practice HW from Stewart Textbook (not to hand in)
p. 842 \# 1-25 odd
p. 850 \# 1-21, 33-43 odd

Integration of functions with more than one variable is similar to partial differentiation. We integrate with respect to one variable and treat the other as a constant.

Example 1: Evaluate $\int_{x}^{x^{2}} \frac{y}{x} d y$.

Solution:

Example 2: Evaluate $\int_{e^{y}}^{y} \frac{y^{2} \ln x}{x} d x$.

Solution:

Iterated Integrals

In this section, we want to look at iterated integrals, which are double integrals of the form.

$$
\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

or

$$
\int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) d x d y
$$

Notes

1. The inside variable of integration can be a function of the outside.
2. The outside integral must have constant limits of integration.

Example 3: Evaluate the iterated integral $\int_{1}^{2} \int_{0}^{1}\left(x^{2}+y\right) d y d x$.

Solution:

Example 4: Evaluate the iterated integral $\int_{0}^{2} \int_{3 y^{2}-6 y}^{2 y-y^{2}} 4 x y d x d y$.

Solution:

Note: Reversing the order of the integration variables will in most cases give the same results.

Example 5: Reverse the order of integration and evaluated the result for the iterated integral $\int_{1}^{2} \int_{0}^{1}\left(x^{2}+y\right) d y d x$.

Solution: If you reverse the order and the limits of integration for $\int_{1}^{2} \int_{0}^{1}\left(x^{2}+y\right) d y d x$, we obtain the integral $\int_{0}^{1} \int_{1}^{2}\left(x^{2}+y\right) d x d y$. Then we have the following.

$$
\begin{aligned}
\int_{0}^{1} \int_{1}^{2}\left(x^{2}+y\right) d x d y & =\int_{0}^{1}\left[\left.\left(\frac{1}{3} x^{3}+y x\right)\right|_{x=1} ^{x=2}\right] d y \\
& =\int_{0}^{1}\left[\left[\frac{1}{3}(2)^{3}+y(2)\right)-\left(\frac{1}{3}(1)^{3}+y(1)\right] d y\right. \\
& =\int_{0}^{1}\left[\frac{8}{3}+2 y-\frac{1}{3}-y\right] d y \\
& =\int_{0}^{1}\left(\frac{7}{3}+y\right) d y \\
& =\left.\left(\frac{7}{3} y+\frac{1}{2} y^{2}\right)\right|_{y=0} ^{y=1} \\
& =\left(\frac{7}{3}(1)+\frac{1}{2}(1)^{2}\right)-\left(\frac{7}{3}(0)+\frac{1}{2}(0)^{2}\right) \\
& =\frac{7}{3}+\frac{1}{2}-0 \\
& =\frac{7}{3} \cdot \frac{2}{2}+\frac{1}{2} \cdot \frac{3}{3} \\
& =\frac{14}{6}+\frac{3}{6} \\
& =\frac{17}{6}
\end{aligned}
$$

Double Integrals over Regions

For integrals of one variable, the region we integrate is always an interval. For double integrals, we want to integrate over a region R in the $x-y$ plane. We denote this double integral using the notation

$$
\iint_{R} f(x, y) d A
$$

If $R=\left\{(x, y) \mid a \leq x \leq b\right.$ and $\left.g_{1}(x) \leq y \leq g_{2}(x)\right\}$ then we write

$$
\iint_{R} f(x, y) d A=\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} f(x, y) d y d x
$$

$R=\left\{(x, y) \mid c \leq y \leq d\right.$ and $\left.h_{1}(y) \leq x \leq h_{2}(y)\right\}$ then we write

$$
\iint_{R} f(x, y) d A=\int_{y=c}^{y=d} \int_{x=h_{1}(x)}^{x=h_{2}(x)} f(x, y) d x d y
$$

The variable of integration to apply first is usually chosen to be the one that makes the initial integration the easiest.

Example 6: Evaluate the double integral $\iint_{R} x \cos \left(x^{2}+2 y\right) d A$ where $R=[0, \sqrt{\pi}] \times\left[0, \frac{\pi}{2}\right]$.

Solution:

Example 7: Evaluate the double integral $\iint_{R} \frac{y}{1+x^{2}} d A$ where $R=\{(x, y) \mid 0 \leq x \leq 4$ and $0 \leq y \leq \sqrt{x}\}$ Solution:

Example 8: Evaluate the double integral $\iint_{R} e^{-x^{2}} d A$ where $R=\left\{(x, y) \mid 0 \leq x \leq 4\right.$ and $\left.\frac{x}{2} \leq y \leq 2\right\}$

Solution: The following graph shows the region R outlined in blue.

If we integrate with respect to y first and then with respect to x, the double integral would be evaluated as

$$
\iint_{R} e^{-x^{2}} d A=\int_{x=0}^{x=4} \int_{y=\frac{x}{2}}^{y=2} e^{-y^{2}} d y d x
$$

There is no formula or method that allows one to integrate $e^{-y^{2}}$ with respect to y. However, if we switch the order of integration and integrate with respect to x first, we can evaluate the integral. Since limits involving variables can only occur for the inside integral, we must use the region R to change the limits of integration. With respect to x, the region R changes from $x=0$ to $x=2 y$. With respect to y, the region changes from $y=0$ to $y=2$. Thus, the double integral can be evaluated by computing the following iterated integral:

$$
\iint_{R} e^{-x^{2}} d A=\int_{y=0}^{y=2} \int_{x=\mathbf{0}}^{y=2 y} e^{-y^{2}} d x d y
$$

(continued on next page)

We compute this double integral as follows.

$$
\begin{aligned}
\iint_{R} e^{-x^{2}} d A & =\int_{y=0}^{y=2} \int_{x=0}^{x=2 y} e^{-y^{2}} d x d y \\
& =\int_{y=0}^{y=2}\left[\left.e^{-y^{2}} x\right|_{x=0} ^{x=2 y}\right] d y \quad \text { (With respect to } x, e^{-y^{2}} \text { is treated as a constant) } \\
& =\int_{y=0}^{y=2}\left[e^{-y^{2}}(2 y)-e^{-y^{2}}(0)\right] d y \quad \text { (Substitute in inner integration limits) } \\
& =\int_{y=0}^{y=2} 2 y e^{-y^{2}} d y \quad \text { (Simplify) }
\end{aligned}
$$

$$
=-\left.e^{-y^{2}}\right|_{y=0} ^{y=2}
$$

$$
\text { Note we use } u-d u \text { substitution to integrate } \int 2 y e^{-y^{2}} d y
$$

$$
\text { Let } u=-y^{2}, d u=-2 y d y \text { or }-d u=y d y
$$

$$
\text { Then } \int 2 y e^{-y^{2}} d y=\int e^{u}(-d u)=-e^{u}+C=-e^{-y^{2}}+C
$$

$$
=-e^{-(2)^{2}}--e^{-(0)^{2}}
$$

(Substitute in outer integration limits)

$$
=-e^{-4}+1
$$

(Simplify)

$$
=1-e^{-4}
$$

Finding Volume Under a Surface

We want a method for finding the volume between a surface $z=f(x, y)$ and the $x-y$ plane. defined by the region R.

If $f(x, y) \geq 0$, the volume can be found using a double integral, which is described as follows.

Volume under a Surface

For a function of the two variables $z=f(x, y) \geq 0$ defined over a region R, the volume above R and under $z=f(x, y)$ is defined by the double integral

$$
\text { Volume under } \mathrm{R}=\iint_{R} f(x, y) d A
$$

Example 9: Find the volume under the surface $z=2 x+y^{2}$ and above the region bounded by $x=y^{2}$ and $x=y^{3}$.

Solution:

