Standard Error Calculation

Procedure:

Step 1: Calculate the mean (Total of all samples divided by the number of samples).
Step 2: Calculate each measurement's deviation from the mean (Mean minus the individual measurement).

Step 3: Square each deviation from mean. Squared negatives become positive.
Step 4: Sum the squared deviations (Add up the numbers from step 3).
Step 5: Divide that sum from step 4 by one less than the sample size ($n-1$, that is, the number of measurements minus one)

Step 6: Take the square root of the number in step 5. That gives you the "standard deviation (S.D.)."
Step 7: Divide the standard deviation by the square root of the sample size (n). That gives you the "standard error".

Step 8: Subtract the standard error from the mean and record that number. Then add the standard error to the mean and record that number. You have plotted mean ± 1 standard error (S. E.), the distance from 1 standard error below the mean to 1 standard error above the mean

Example:

Name	Height to nearest 0.5 cm	2 Deviations $(\mathrm{m}-\mathrm{i})$	3 Squared deviations $(\mathrm{m}-\mathrm{i})^{2}$
1. Waldo	150.5	11.9	141.61
2. Finn	170.0	-7.6	57.76
3. Henry	160.0	2.4	5.76
4. Alfie	161.0	1.4	1.96
5. Shane	170.5	-8.1	65.61
$\mathbf{n}=5$	1 Mean $\mathbf{m}=162.4 \mathrm{~cm}$		4 Sum of squared deviations $\sum(\mathrm{m}-\mathrm{i})^{2}=272.70$

5 Divide by number of measurements-1. $\sum(m-i)^{2} /(n-1)=272.70 / 4=68.175$

6 Standard deviation $=$ square root of $\sum(m-i)^{2} / n-1=\sqrt{ } 68.175=8.257$

7 Standard error = Standard deviation $/ \sqrt{ } n=8.257 / 2.236=3.69$
$\mathbf{8} \mathbf{m} \pm \mathbf{1 S E}=162 \pm 3.7$ or 159 cm to 166 cm for the men ($162.4-3.7$ to $162.4+3.7$).

